\(\dfrac{x^2}{x+1}\) ϵ Z  

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để A nguyên thì x^2 chia hết cho x+1

=>x^2-1+1 chia hết cho x+1

=>\(x+1\in\left\{1;-1\right\}\)

=>\(x\in\left\{0;-2\right\}\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2019

Lời giải:
a)

ĐKXĐ: \(x\neq 0; x\neq - 1\)

\(M=\frac{(x+2)(x+1)+2.3x-3.3x(x+1)}{3x(x+1)}:\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)

\(=\frac{-8x^2+2}{3x(x+1)}.\frac{x+1}{2-4x}-\frac{3x-x^2+1}{3x}=\frac{2(1-4x^2)}{3x(2-4x)}-\frac{3x-x^2+1}{3x}\)

\(=\frac{2(1-2x)(1+2x)}{6x(1-2x)}-\frac{3x-x^2+1}{3x}=\frac{1+2x}{3x}-\frac{3x-x^2+1}{3x}=\frac{x^2-x}{3x}=\frac{x-1}{3}\)

b)

Khi $x=2006\Rightarrow M=\frac{2006-1}{3}=\frac{2005}{3}$

c)

\(M< 0\Leftrightarrow \frac{x-1}{3}< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ suy ra $x< 1; x\neq 0; x\neq -1$

d)

Để \(\frac{1}{M}=\frac{3}{x-1}\in\mathbb{Z}\) thì \(3\vdots x-1\)

\(\Rightarrow x-1\in\left\{\pm 1;\pm 3\right\}\)

\(\Rightarrow x\in\left\{0;2;-2;4\right\}\)

Kết hợp đkxđ suy ra $x\in\left\{-2;2;4\right\}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2019

Lời giải:
a)

ĐKXĐ: \(x\neq 0; x\neq - 1\)

\(M=\frac{(x+2)(x+1)+2.3x-3.3x(x+1)}{3x(x+1)}:\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)

\(=\frac{-8x^2+2}{3x(x+1)}.\frac{x+1}{2-4x}-\frac{3x-x^2+1}{3x}=\frac{2(1-4x^2)}{3x(2-4x)}-\frac{3x-x^2+1}{3x}\)

\(=\frac{2(1-2x)(1+2x)}{6x(1-2x)}-\frac{3x-x^2+1}{3x}=\frac{1+2x}{3x}-\frac{3x-x^2+1}{3x}=\frac{x^2-x}{3x}=\frac{x-1}{3}\)

b)

Khi $x=2006\Rightarrow M=\frac{2006-1}{3}=\frac{2005}{3}$

c)

\(M< 0\Leftrightarrow \frac{x-1}{3}< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ suy ra $x< 1; x\neq 0; x\neq -1$

d)

Để \(\frac{1}{M}=\frac{3}{x-1}\in\mathbb{Z}\) thì \(3\vdots x-1\)

\(\Rightarrow x-1\in\left\{\pm 1;\pm 3\right\}\)

\(\Rightarrow x\in\left\{0;2;-2;4\right\}\)

Kết hợp đkxđ suy ra $x\in\left\{-2;2;4\right\}$

9 tháng 12 2017

a, Để B xác định

\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\4-x^2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

\(b,B=\dfrac{3}{x-2}+\dfrac{-2}{x+2}-\dfrac{x-14}{4-x^2}\)

\(=\dfrac{3\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{-2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x-14}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{3x+6-2x+4+x-14}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)

c, Đẻ B có giá trị nguyên

\(\Leftrightarrow2⋮x+2\Leftrightarrow x+2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Ta có bẳng sau:

\(x+2\) 1 -1 2 -2
2 -1 -3 0 -4

Vậy \(x\in\left\{-1;-3;0;-4\right\}\) thì B có giá trị nguyên

14 tháng 12 2022

\(A=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{x^2\left(2-x\right)}{4x\left(x-3\right)}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{4\left(x-3\right)}\)

\(=\dfrac{-4x^2-8x}{x+2}\cdot\dfrac{-x}{4\left(x-3\right)}=\dfrac{-4x\left(x+2\right)}{\left(x+2\right)}\cdot\dfrac{-x}{4\left(x-3\right)}\)

\(=\dfrac{x^2}{x-3}\)

10 tháng 9 2020

a, \(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\) (ĐKXĐ: x \(\ne\) 2; x \(\ne\) -3)

\(\Leftrightarrow\) \(\frac{\left(2-x\right)^2}{x^2+x-6}-\frac{5}{x^2+x-6}+\frac{x+3}{x^2+x-6}\)

\(\Rightarrow\) (2 - x)2 - 5 + x + 3

\(\Leftrightarrow\) 4 - 4x + x2 - 5 + x + 3

\(\Leftrightarrow\) x2 - 3x + 2

\(\Leftrightarrow\) x2 - 2x - x + 2

\(\Leftrightarrow\) x(x - 2) - (x - 2)

\(\Leftrightarrow\) (x - 2)(x - 1)

b, P = \(\frac{-3}{4}\) thì (x - 2)(x - 1) = \(\frac{-3}{4}\)

\(\Leftrightarrow\) 4(x - 2)(x - 1) = -3

\(\Leftrightarrow\) 4x2 - 12x + 8 + 3 = 0

\(\Leftrightarrow\) 4x2 - 12x + 11 = 0

\(\Leftrightarrow\) 4x2 - 12x + 9 + 2 = 0

\(\Leftrightarrow\) (2x - 3)2 + 2 = 0

Vì (2x - 3)2 + 2 > 0 với mọi x nên ko có x nào t/m P = \(\frac{-3}{4}\)

c, Nếu x \(\in\) Z thì P luôn \(\in\) Z vì (x - 2)(x - 1) với x \(\in\) Z \(\Rightarrow\) (x - 2) \(\in\) Z và (x - 1) \(\in\) Z \(\Rightarrow\) tích của chúng cũng thuộc Z

d, x2 - 9 = 0

\(\Leftrightarrow\) (x - 3)(x + 3) = 0

\(\Leftrightarrow\) x = -3; x = 3

Thay vào ta được:

TH1: P1 = (3 - 2)(3 - 1) = 2

TH2: P2 = (-3 - 2)(-3 - 1) = 20

Vậy nếu P = 2; 20 thì x2 - 9 = 0

Chúc bn học tốt (ko chắc lắm)

24 tháng 5 2018

đề có sai ko

6 tháng 6 2018

uk mình bấm lộn phải là

x+y^2+9=2*(\(\sqrt{x-3}\)+3*\(\sqrt{y^2+2}\))

29 tháng 12 2021

b: \(B=\dfrac{2x-8+x+20}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x+12}{\left(x+4\right)\left(x-4\right)}=\dfrac{3}{x-4}\)

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

7 tháng 5 2018

nhân cả 2 vế với 2 rồi bunhia

6 tháng 4 2018

câu c là \(\dfrac{1}{2}\)(x+y+z) nhé, mih chép nhầm