Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
ĐKXĐ: \(x\neq 0; x\neq - 1\)
\(M=\frac{(x+2)(x+1)+2.3x-3.3x(x+1)}{3x(x+1)}:\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)
\(=\frac{-8x^2+2}{3x(x+1)}.\frac{x+1}{2-4x}-\frac{3x-x^2+1}{3x}=\frac{2(1-4x^2)}{3x(2-4x)}-\frac{3x-x^2+1}{3x}\)
\(=\frac{2(1-2x)(1+2x)}{6x(1-2x)}-\frac{3x-x^2+1}{3x}=\frac{1+2x}{3x}-\frac{3x-x^2+1}{3x}=\frac{x^2-x}{3x}=\frac{x-1}{3}\)
b)
Khi $x=2006\Rightarrow M=\frac{2006-1}{3}=\frac{2005}{3}$
c)
\(M< 0\Leftrightarrow \frac{x-1}{3}< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ suy ra $x< 1; x\neq 0; x\neq -1$
d)
Để \(\frac{1}{M}=\frac{3}{x-1}\in\mathbb{Z}\) thì \(3\vdots x-1\)
\(\Rightarrow x-1\in\left\{\pm 1;\pm 3\right\}\)
\(\Rightarrow x\in\left\{0;2;-2;4\right\}\)
Kết hợp đkxđ suy ra $x\in\left\{-2;2;4\right\}$
Lời giải:
a)
ĐKXĐ: \(x\neq 0; x\neq - 1\)
\(M=\frac{(x+2)(x+1)+2.3x-3.3x(x+1)}{3x(x+1)}:\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)
\(=\frac{-8x^2+2}{3x(x+1)}.\frac{x+1}{2-4x}-\frac{3x-x^2+1}{3x}=\frac{2(1-4x^2)}{3x(2-4x)}-\frac{3x-x^2+1}{3x}\)
\(=\frac{2(1-2x)(1+2x)}{6x(1-2x)}-\frac{3x-x^2+1}{3x}=\frac{1+2x}{3x}-\frac{3x-x^2+1}{3x}=\frac{x^2-x}{3x}=\frac{x-1}{3}\)
b)
Khi $x=2006\Rightarrow M=\frac{2006-1}{3}=\frac{2005}{3}$
c)
\(M< 0\Leftrightarrow \frac{x-1}{3}< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ suy ra $x< 1; x\neq 0; x\neq -1$
d)
Để \(\frac{1}{M}=\frac{3}{x-1}\in\mathbb{Z}\) thì \(3\vdots x-1\)
\(\Rightarrow x-1\in\left\{\pm 1;\pm 3\right\}\)
\(\Rightarrow x\in\left\{0;2;-2;4\right\}\)
Kết hợp đkxđ suy ra $x\in\left\{-2;2;4\right\}$
a, Để B xác định
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\4-x^2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
\(b,B=\dfrac{3}{x-2}+\dfrac{-2}{x+2}-\dfrac{x-14}{4-x^2}\)
\(=\dfrac{3\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{-2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x-14}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{3x+6-2x+4+x-14}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
c, Đẻ B có giá trị nguyên
\(\Leftrightarrow2⋮x+2\Leftrightarrow x+2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Ta có bẳng sau:
\(x+2\) | 1 | -1 | 2 | -2 |
2 | -1 | -3 | 0 | -4 |
Vậy \(x\in\left\{-1;-3;0;-4\right\}\) thì B có giá trị nguyên
\(A=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{x^2\left(2-x\right)}{4x\left(x-3\right)}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{4\left(x-3\right)}\)
\(=\dfrac{-4x^2-8x}{x+2}\cdot\dfrac{-x}{4\left(x-3\right)}=\dfrac{-4x\left(x+2\right)}{\left(x+2\right)}\cdot\dfrac{-x}{4\left(x-3\right)}\)
\(=\dfrac{x^2}{x-3}\)
a, \(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\) (ĐKXĐ: x \(\ne\) 2; x \(\ne\) -3)
\(\Leftrightarrow\) \(\frac{\left(2-x\right)^2}{x^2+x-6}-\frac{5}{x^2+x-6}+\frac{x+3}{x^2+x-6}\)
\(\Rightarrow\) (2 - x)2 - 5 + x + 3
\(\Leftrightarrow\) 4 - 4x + x2 - 5 + x + 3
\(\Leftrightarrow\) x2 - 3x + 2
\(\Leftrightarrow\) x2 - 2x - x + 2
\(\Leftrightarrow\) x(x - 2) - (x - 2)
\(\Leftrightarrow\) (x - 2)(x - 1)
b, P = \(\frac{-3}{4}\) thì (x - 2)(x - 1) = \(\frac{-3}{4}\)
\(\Leftrightarrow\) 4(x - 2)(x - 1) = -3
\(\Leftrightarrow\) 4x2 - 12x + 8 + 3 = 0
\(\Leftrightarrow\) 4x2 - 12x + 11 = 0
\(\Leftrightarrow\) 4x2 - 12x + 9 + 2 = 0
\(\Leftrightarrow\) (2x - 3)2 + 2 = 0
Vì (2x - 3)2 + 2 > 0 với mọi x nên ko có x nào t/m P = \(\frac{-3}{4}\)
c, Nếu x \(\in\) Z thì P luôn \(\in\) Z vì (x - 2)(x - 1) với x \(\in\) Z \(\Rightarrow\) (x - 2) \(\in\) Z và (x - 1) \(\in\) Z \(\Rightarrow\) tích của chúng cũng thuộc Z
d, x2 - 9 = 0
\(\Leftrightarrow\) (x - 3)(x + 3) = 0
\(\Leftrightarrow\) x = -3; x = 3
Thay vào ta được:
TH1: P1 = (3 - 2)(3 - 1) = 2
TH2: P2 = (-3 - 2)(-3 - 1) = 20
Vậy nếu P = 2; 20 thì x2 - 9 = 0
Chúc bn học tốt (ko chắc lắm)
uk mình bấm lộn phải là
x+y^2+9=2*(\(\sqrt{x-3}\)+3*\(\sqrt{y^2+2}\))
b: \(B=\dfrac{2x-8+x+20}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x+12}{\left(x+4\right)\left(x-4\right)}=\dfrac{3}{x-4}\)
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)
Để A nguyên thì x^2 chia hết cho x+1
=>x^2-1+1 chia hết cho x+1
=>\(x+1\in\left\{1;-1\right\}\)
=>\(x\in\left\{0;-2\right\}\)