\(C=\frac{2\sqrt{x}+3}{\sqrt{x}-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016

\(C=\frac{2\sqrt{x}+3}{\sqrt{x}-1}\left(ĐK:x\ge0;x\ne1\right)\\ =\frac{2\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)

Vậy để C nguyên thì \(\sqrt{x}-1\inƯ\left(5\right)\)

Mà Ư(5)={1;-1;5;-5}

=> \(\sqrt{x}-1=\left\{-1;1;5;-5\right\}\)

Ta có bawnngr sau:

\(\sqrt{x}-1\)1-15-5
x4036loại

Vậy x={0;4;36}

 

7 tháng 10 2016

thanks nha

 

25 tháng 10 2016

Để A nguyên thì \(\sqrt{x}-1\inƯ\left(5\right)\)

Mà Ư(5)={1;-1;5;-5}

=> \(\sqrt{x}-1\in\left\{1;-1;5;-5\right\}\)

Ta có bảng sau:

\(\sqrt{x}-1\)1-15-5
\(\sqrt{x}\)206-4
x4036loại

Vậy \(x\in\left\{0;4;36\right\}\)

 

1 tháng 10 2019

Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)

Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5

 Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)

Vậy B đạt giá  trị lớn nhất là 3/19 khi và chỉ khi x = 5

C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2

Suy ra x là số chính phương lẻ

 Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}

10 tháng 11 2016

a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)

Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)

b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)

Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)

Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành

\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)

\(\Rightarrow t=5t-10\)

\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)

\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)

\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)

Vậy \(x=\frac{9}{4}\)