\(\frac{x}{2}\)=\(\frac{y}{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

a) Thiếu đề

b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

 \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)

=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)

Vậy ...

25 tháng 6 2019

Sửa lại xíu :

 \(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)

\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)

12 tháng 9 2020

a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)

=> \(2\cdot4=5\left(x-3\right)\)

=> \(8=5x-15\)

=> \(5x-15=8\)

=> \(5x=23\)=> x = 23/5 (tm)

b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)

=> 3(x + 1) = 5(4x - 2)

=> 3x + 3 = 20x - 10

=> 3x + 3 - 20x + 10 = 0

=> 3x - 20x + 3 + 10 = 0

=> 3x - 20x = -13

=> -17x = -13

=> x = 13/17(tm)

2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10

=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)

=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)

b) Bạn tự làm

c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)

=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)

d) Đặt x/3 = y/4 = k

=> x = 3k, y = 4k

Theo đề bài ta có => xy = 3k.4k = 12k2

=> 48 = 12k2

=> k2  = 48 : 12 = 4

=> k = 2 hoặc k = -2

Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8

Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8

12 tháng 9 2020

Bài 1.

a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )

<=> 2.4 = ( x - 3 ).5

<=> 8 = 5x - 15

<=> 8 + 15 = 5x

<=> 23 = 5x

<=> 23/5 = x ( tmđk )

b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)

<=> ( x + 1 ).3 = 5( 4x - 2 )

<=> 3x + 3 = 20x - 10

<=> 3x - 20x = -10 - 3

<=> -17x = -13

<=> x = 13/17

Bài 2.

a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)

b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)

\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)

c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)

d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)

xy = 48

<=> 3k.4k= 48

<=> 12k2 = 48

<=> k2 = 4

<=> k = ±2

+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)

+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)

4 tháng 10 2019

a) Vì \(3x=\frac{2}{3}y=\frac{4}{5}z\)

\(\Rightarrow3x:12=\frac{2}{3}y:12=\frac{4}{5}z:12\)

\(\Rightarrow\frac{x}{4}=\frac{y}{18}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{4}=\frac{y}{18}=\frac{z}{15}=\frac{x-y-z}{4-18-15}=\frac{10}{-29}=\frac{-10}{29}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-10}{29}.4=\frac{-40}{29}\\y=\frac{-10}{29}.18=\frac{-180}{29}\\z=\frac{-10}{29}.15=\frac{-150}{29}\end{cases}}\)

Vậy ...

b) Ta có; \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)và \(x^2+2y^2-3z^2=-650\left(1\right)\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}\left(2\right)}\)

Thay (2) vào (1) ta được:

\(\left(2k\right)^2+2.\left(3k\right)^2-3.\left(4k\right)^2=-650\)

\(\Leftrightarrow4k^2+18k^2-48k^2=-650\)

\(\Leftrightarrow-26k^2=-650\)

\(\Leftrightarrow k^2=25\)

\(\Leftrightarrow k=\pm5\)

TH1: Thay k=5 vào (2) ta được:

\(\hept{\begin{cases}x=2.5=10\\y=3.5=15\\z=4.5=20\end{cases}}\)

TH2: Thay k=-5 vào (2) ta được:

\(\hept{\begin{cases}x=-5.2=-10\\y=-5.3=-15\\z=-5.4=-20\end{cases}}\)

Vậy \(\left(x,y,z\right)=\left\{\left(10;15;20\right);\left(-10;-15;-20\right)\right\}\)

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0
3 tháng 10 2020

a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)

=> x = 11.6 = 66,y = 11.5 = 55

b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)

=> x = (-4).5 = -20 , y = (-4).4 = -16

c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)

=> xy = 3t.16t = 48t2

=> 48t2 = 192

=> t2 = 4

=> t = \(\pm\)2

Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32

Với t = -2 thì x = -6,y = -32

d) \(\frac{x}{-3}=\frac{y}{7}\)

=> \(\frac{x^2}{9}=\frac{y^2}{49}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)

=> x2 = 9.9 = 81 => x = \(\pm\)9

y2 = 9.49 = 441 => y = \(\pm\)21

Câu e,f tương tự

3 tháng 10 2020

làm hộ mik cả câu e,f nx nhé