Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a.\(A=\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\)
Ta có: \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)
\(\left|y-\frac{14}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\)
Dấu = xảy ra khi :
\(\frac{x}{5}+\frac{23}{2}=0\Leftrightarrow\frac{x}{5}=-\frac{23}{2}\Leftrightarrow x=-\frac{115}{2}\)
\(y-\frac{14}{3}=0\Leftrightarrow y=\frac{14}{3}\)
Vậy ..............
Ta có:
a) \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)
\(\left|y-\frac{14}{3}\right|\ge0\forall y\)
=> \(\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{x}{5}+\frac{23}{2}=0\\y-\frac{14}{3}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)
Vậy Min của A = 2019 tại \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)
câu b tượng tự

Bài 1: a) Do (3-2x)2 \(\ge0\) và (y-5)20 \(\ge0\)
mà (3-2x)2+(y-5)20\(\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=0\\\left(y-5\right)^{20}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-2x=0\\y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=3-0=3\\y=0+5=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=5\end{matrix}\right.\)
Vậy: \(x=\frac{3}{2};y=5\)
c) x là các số nguyên hả bạn?
Do (x-3).(x-4)\(\le0\)
\(\Rightarrow\) Có hai trường hợp:
TH1: (x-3)(x-4)=0
Trong hai số (x-3) và (x-4) có một số bằng 0.
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0+3=3\\x=0+4=4\end{matrix}\right.\)
TH2: (x-3)(x-4)<0
Trong hai số x-3 và x-4 có một số là số nguyên dương, 1 số là số nguyên âm.
mà x-4<x-3 \(\Rightarrow\) x-4 là số nguyên âm ( x-4<0) \(\Leftrightarrow\) x<4 (1)
x-3 là số nguyên dương (x-3>0) \(\Rightarrow x>3\) (2)
Từ (1) và (2) \(\Rightarrow\) 3<x<4 mà x là các số nguyên nên x ko tm
Vậy: x\(\in\left\{3;4\right\}\)
Bài 2:
c) (x-12).(y+5)=7=1.7=7.1=-1.-7=-7.-1
\(\Rightarrow\) \(\left[{}\begin{matrix}x-12=1;y+5=7\\x-12=7;y+5=1\\x-12=-1;y+5=-7\\x-12=-7;y+5=-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=13;y=2\\x=19;y=-4\\x=11;y=-12\\x=5;y=-6\end{matrix}\right.\)
Vậy:...

B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)

a, x thuộc { -2017;2017}
b,x thuộc {-2017;2017}
c,x và y đều bằng 0
d, x = -5 ; y = 3
f, không tìm được x, y vì giá trị tuyệt đối của số nguyên luôn là số tự nhiên.

Bài 1:
Nếu biểu thức A như bạn viết, thì sau khi rút gọn, $A=54x+270$ là biểu thức có giá trị phụ thuộc vào biến.
Sửa đề:
\(A=(x+3)^3-(x+9)(x^2+27)\)
\(=(x+3)(x+3)(x+3)-(x^3+27x+9x^2+243)\)
\(=(x^2+6x+9)(x+3)-(x^3+27x+9x^2+243)\)
\(=(x^3+3x^2+6x^2+18x+9x+27)-(x^3+27x+9x^2+243)\)
\(=(x^3+9x^2+27x+27)-(x^3+27x+9x^2+243)\)
\(=27-81=-216\) là biểu thức có giá trị không phụ thuộc vào biến $x $ (đpcm)
\(B=(x+y)(x^2-xy+y^2)+(x-y)(x^2+xy+y^2)-2(x^3-9)\)
\(=(x^3+y^3)+(x^3-y^3)-2(x^3-9)\) (hằng đẳng thức đáng nhớ)
\(=2x^3-2(x^3-9)=18\) là biểu thức có giá trị không phụ thuộc vào biến $x$ (đpcm)
Bài 2:
Sửa đề: Cho \((a^2+b^2)(x^2+y^2)=(ax+by)^2\)
CMR: \(\frac{a}{x}=\frac{b}{y}\)
Bạn lưu ý viết đề bài chính xác hơn.
-----------------------------
Ta có: \((a^2+b^2)(x^2+y^2)=(ax+by)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2ax.by+b^2y^2\)
\(\Leftrightarrow a^2y^2+b^2x^2=2ay.bx\)
\(\Leftrightarrow (ay)^2-2ay.bx+(bx)^2=0\)
\(\Leftrightarrow (ay-bx)^2=0\Leftrightarrow ay=bx\Leftrightarrow \frac{a}{x}=\frac{b}{y}\)
Ta có đpcm.

a) Ta có = 1 = 1.1 = (-1) . (-1)
Lập bảng xét 2 trường hợp ta có :
\(x+3\) | \(1\) | \(-1\) |
\(y+2\) | \(1\) | \(-1\) |
\(x\) | \(-2\) | \(-4\) |
\(y\) | \(-1\) | \(-3\) |
Vậy các cặp (x;y) thỏa mãn là : (- 2 ; - 1) ; (- 4 ; - 3)
b)
\(a;\left(x+3\right)\left(y+2\right)=1\)
=> Có 2 TH:
*TH1: x+3 = 1 và y+2 =1
=> x = -2 y = -1
* TH2: x +3 = -1 và y + 2 = -1
=> x = -4 y = -3

a) 2|x| + 34 = 50
-> 2|x| = 16
-> x = 8 hoặc x = -8.
b) 3|x|−21=36
-> 3|x| = 57
-> x = 19 hoặc x = -19.
c) 19−5|x|+3=19
-> 19 - 5|x| = 16
-> 3 = 5|x|
-> x = 0,6 hoặc x = -0,6.
Ta có |x+2|\(\ge0\forall x\)
|y−5|\(\ge0\forall y\)
nên /x+2/+/y-5/\(\ge0\forall x;y\)
Mà theo bài ra /x+2/+/y-5/=0
suy ra
x+2=0 và y-5=0
Với x+2=0 suy ra x=-2
Với y-5=0 suy ra y=5
Vậy x=-2 và y=5
Đề thiếu