\(\in Z\)biết:

\(2^x+12^2=y^2-3^2\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

\(2^x+12^2=y^2-3^2\)

<=> \(2^x+153=y^2\)

Với x < 0 => \(2^x\notin Z\)=> \(2^x+153\notin Z\)=> \(y^2\notin Z\)=> \(y\notin Z\)

Với x = 0 => 154 = y^2 ( loại )

Với x > 0

TH1: x = 2k + 1  ( k là số tự nhiên )

Ta có: \(2^{2k+1}+153=y^2\)

VT\(=4^k.2+153\): 3 dư 2

=> \(VP=y^2:3\) dư 2 vô lí vì số chính phương chia 3 dư 0 hoặc 1

TH2: x = 2k ( k là số tự nhien )

Ta có: \(2^{2k}+153=y^2\)

<=> \(\left(y-2^k\right)\left(y+2^k\right)=153\)

=> \(153⋮y+2^k\Rightarrow y+2^k\in\left\{\pm1;\pm153;\pm3;\pm51;\pm9;\pm17\right\}\)

Em tự làm tiếp nhé.

26 tháng 8 2016

khocroiThế câu một các cậu làm được chưa

 

11 tháng 3 2019

1,b, 2xy - x = y + 5

<=> 4xy - 2x = 2y + 10

<=> 2x(2y - 1) - (2y - 1) = 11

<=> (2x - 1)(2y - 1) = 11

Lập bảng ra làm nốt

11 tháng 3 2019

\(1,c,\frac{1}{x}-3=-\frac{1}{y-2}\)

\(\Leftrightarrow y-2-3x\left(y-2\right)=-x\)

\(\Leftrightarrow y-2-3xy+6x+x=0\)

\(\Leftrightarrow-3xy+7x+y-2=0\)

\(\Leftrightarrow-x\left(3y-7\right)+y-2=0\)

\(\Leftrightarrow-3x\left(3y-7\right)+3y-6=0\)

\(\Leftrightarrow-3x\left(3y-7\right)+\left(3y-7\right)=-1\)

\(\Leftrightarrow\left(1-3x\right)\left(3y-7\right)=-1\)

Lập bảng làm nốt

24 tháng 1 2017

a) Ta đặt: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{-2}=k\)

\(\Rightarrow x=4k;y=3k;z=-2k\)

\(\Rightarrow xyz=\left(4.3.-2\right).k^3\)

\(\Rightarrow xyz=\left(-24\right).k^3\)

\(\Rightarrow k^3=240:\left(-24\right)=-10\)

\(\Rightarrow\)(đề sai, không ra số tự nhiên)

24 tháng 1 2017

nếu đề cho là tìm thui thì là thuộc Z đó bạn

19 tháng 7 2017

Em chỉ giải phần B thôi nhé !

x/4=y/3=x-y/4-3=x2-y2=42-32=28/7=4

Suy ra x/4=4 -> x= 16

            y/3=4-> y =12

 chị thông cảm em mói học lop 6 dung thi dung sai thi sai dung la em nha

19 tháng 7 2017

hk sao đâu e

23 tháng 5 2018

b,Vì  \(\frac{x}{3}=\frac{y}{7}=\frac{z}{5}\)=>\(\left(\frac{x}{3}\right)^2=\left(\frac{y}{7}\right)^2=\left(\frac{z}{5}\right)^2\)=> \(\frac{x^2}{3^2}=\frac{y^2}{7^2}=\frac{z^2}{5^2}\)=> \(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}\left(1\right)\)

Mà \(x^2-y^2+z^2=-60\left(2\right)\)

Từ (1)(2) Ta áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}=\frac{x^2-y^2+z^2}{9-49+25}=\frac{-60}{-15}=4\)(Vì\(x^2-y^2+z^2=-60\) )

Ta có \(\frac{x^2}{9}=4=>x^2=4.9=36=>x=+-\left(6\right)\)

\(\frac{y^2}{49}=4=>y^2=4.49=196=>y=+-\left(14\right)\)

\(\frac{z^2}{25}=4=>z^2=4.25=100=>z=+-\left(10\right)\)

Mặt khác x,y,z cùng dấu nên => \(\hept{\begin{cases}x=6;y=14;z=10\\x=\left(-6\right);y=\left(-14\right);z=\left(-10\right)\end{cases}}\)

Vậy........

k cho mình nha!!!

24 tháng 5 2018

b/

Ta có \(\frac{x}{3}=\frac{y}{7}=\frac{z}{5}\)=> \(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}\)

và \(x^2-y^2+z^2=-60\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}=\frac{x^2-y^2+z^2}{9-49+25}=\frac{-60}{-15}=4\)

=> \(\frac{x}{3}=4\)=> x = 12

=> \(\frac{y}{7}=4\)=> y = 28

=> \(\frac{z}{5}=4\)=> z = 20

tích mình đi

làm ơn

rùi mình

tích lại

thanks

27 tháng 7 2018

k mk đi

22 tháng 6 2020

Mình cảm ơn các bạn giải giúp mình trước nha !

22 tháng 6 2020

câu 1 (có sai đề ko ?) vì có z nên khó tìm được x

câu 2 thì cứ biến z/5=2z/10 rồi áp dụng tính chất dãy tỉ số bằng nhau nên ta có được:

x+y+2z/2+3+10=10/15=2/3

9 tháng 12 2016

a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)

=> x = 4.3 = 12

y = 4.4 = 16

b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

=> x = (-1).2 = -2

y = (-1)(-5) = 5

c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)

=> x = 8

y =12

z = 15