Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn lần sau đăng ít thôi nhé :)
a/ \(\frac{x}{y}=5\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{18}{6}=3\)
=> x = 15 , y = 3
b/ \(\frac{x}{17}=\frac{y}{2}\Rightarrow\frac{2x}{34}=\frac{y}{2}=\frac{2x-y}{34-2}=\frac{64}{32}=2\)
=> x = 34, y = 4
c/ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)
=> x = -28 , y=-12
d,e,f,g,h tương tự.
i/ \(x:y=5:6\Rightarrow\frac{x}{5}=\frac{y}{6}\)
Làm tương tự các câu còn lại.
j/ Đặt \(\frac{x}{4}=\frac{y}{7}=k\) \(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)
xy = 112 => 4k.7k = 112 => \(k^2=4\Rightarrow k=\pm2\)
Nếu k = 2 thì x = 8, y = 14
Nếu k = -2 thì x = -8 , y = -14
k/ \(-2x=3y\Rightarrow\frac{x}{3}=\frac{y}{-2}\)
Làm tương tự câu j.
a) Vì \(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+4}=\frac{28}{14}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.7=14\\y=3.3=9\\z=3.4=12\end{cases}}\)
Vậy ...
b) Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y-2z}{6-6-12}=\frac{24}{-12}=-2\)
\(\Rightarrow\hept{\begin{cases}x=-2.2=-4\\y=-2.3=-6\\z=-2.6=-12\end{cases}}\)
Vậy ...
a)\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+\text{4}}=\frac{24}{14}=\frac{12}{7}\)
=>\(\frac{x}{7}=\frac{12}{7}\)
x=12
=>\(\frac{y}{3}=\frac{12}{7}\)
y=\(\frac{36}{7}\)
=>\(\frac{z}{4}=\frac{12}{7}\)
z=48/7
vây x=12;y=36/7;z=48/7
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
suy ra: \(x=2k;\)\(y=3k;\)\(z=4k\)
Ta có: \(x^2+y^2+z^2=116\)
<=> \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)
<=> \(29k^2=116\)
<=> \(k^2=4\)
<=> \(k=\pm2\)
tự làm nốt
a) \(\frac{-24}{x}=\frac{3}{7}\)
\(\Rightarrow-24.7=3x\)
\(\Rightarrow-168=3x\)
\(\Rightarrow x=-168:3\)
\(\Rightarrow x=-56\)
Vậy x = -56
b) Ta có : \(\frac{x}{5}=\frac{y}{7}=\frac{3x}{3.5}=\frac{2y}{2.7}=\frac{3x}{15}=\frac{2y}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{7}=\frac{3x}{15}=\frac{2y}{14}=\frac{3x-2y}{15-14}=\frac{2}{1}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=2\Rightarrow x=2.5=10\\\frac{y}{7}=2\Rightarrow y=2.7=14\end{cases}}\)
Vậy x = 10, y = 14
a) \(\frac{-24}{x}=\frac{3}{7}\)\(\Leftrightarrow3x=-24.7\)\(\Leftrightarrow3x=-168\)
\(\Leftrightarrow x=-56\)
Vậy \(x=-56\)
b) \(\frac{x}{5}=\frac{y}{7}=\frac{3x}{15}=\frac{2y}{14}=\frac{3x-2y}{15-14}=\frac{-2}{1}=-2\)
\(\Rightarrow x=-2.5=-10\); \(y=-2.7=-14\)
Vậy \(x=-10\)và \(y=-14\)
theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{3x-2y}{9-14}=\frac{20}{-5}=-4\)
Do đó:
\(x=-4.3=-12\)
\(y=-4.7=-28\)
vậy x= -12
y=-28
Áp dụng tích chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{3x}{9}=\frac{2y}{14}=\frac{3x-2y}{9-14}=\frac{20}{-5}=-4\)
Nên : \(\frac{x}{3}=-4\Rightarrow x=-12\)
\(\frac{y}{7}=-4\Rightarrow y=-21\)
Vậy x = -12 , y = -21