Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Nhân từng vế ba đẳng thức được :
\(xy\cdot yz\cdot xz=\frac{2}{3}\cdot\frac{3}{5}\cdot\frac{5}{8}\)
\(\Rightarrow x^2y^2z^2=\frac{2}{8}=\frac{1}{4}\)
\(\Rightarrow(xyz)^2=\frac{1}{4}\), do đó \(xyz=\pm\frac{1}{2}\).
Nếu xyz = \(\frac{1}{2}\) thì cùng với xy = \(\frac{2}{3}\)suy ra z = \(\frac{3}{4}\) , cùng với yz = \(\frac{3}{5}\)suy ra x = \(\frac{5}{6}\), cùng với zx = \(\frac{5}{8}\)suy ra y = \(\frac{4}{5}\)
Nếu xyz = \(-\frac{1}{2}\)thì lập luận tương tự như trên suy ra : z = \(-\frac{3}{4}\), x = \(-\frac{5}{6}\), y = \(-\frac{4}{5}\)
b, Cộng từng vế ba đẳng thức được :
\(x(x-y+z)+y(y-z-x)+z(z+x-y)=49\)
Do đó \((z-y+x)^2=49\)nên \(z-y+x=\pm7\)
Tìm hai đáp số rồi xong
b) \(\Rightarrow x\left(x-y+z\right)+y\left(y-z-x\right)+z\left(z+x-y\right)=49\)
\(\Rightarrow x^2-xy+xz+y^2-yz-xy+z^2+xz-yz=49\)
\(\Rightarrow x^2+y^2+z^2-2xy-2yz+2xz=49\)
\(\Rightarrow x^2+\left(-y\right)^2+z^2+2x\left(-y\right)+2\left(-y\right)z+2xz=49\)
\(\Rightarrow\left(x+\left(-y\right)+z\right)^2=49\)
\(\Rightarrow\orbr{\begin{cases}x-y+z=7\\x-y+z=-7\end{cases}}\)
+) \(x-y+z=7\)\(\Rightarrow\hept{\begin{cases}x=\frac{-11}{7}\\y=\frac{-25}{7}\\z=5\end{cases}}\)
+) \(x-y+z=-7\)\(\Rightarrow\hept{\begin{cases}x=\frac{11}{7}\\y=\frac{25}{7}\\z=-5\end{cases}}\)
Ta có :
\(x\left(x-y+z\right)+y\left(y-z-x\right)+z\left(z+x-y\right)=-11+25+35\)
\(\Leftrightarrow\)\(x\left(x-y+z\right)-y\left(x-y+z\right)+z\left(x-y+z\right)=49\)
\(\Leftrightarrow\)\(\left(x-y+z\right)\left(x-y+z\right)=49\)
\(\Leftrightarrow\)\(\left(x-y+z\right)^2=7^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-y+z=7\\x-y+z=-7\end{cases}}\)
Từ giả thiết suy ra :
\(x=\frac{-11}{x-y+z}=\frac{-11}{7}\) hoặc \(x=\frac{-11}{x-y+z}=\frac{-11}{-7}=\frac{11}{7}\)
\(y=\frac{25}{x-y+z}=\frac{25}{7}\) hoặc \(y=\frac{25}{x-y+z}=\frac{25}{-7}=\frac{-25}{7}\)
\(z=\frac{35}{x-y+z}=\frac{35}{7}=5\) hoặc \(z=\frac{35}{x-y+z}=\frac{35}{-7}=-5\)
Vậy \(x=\frac{-11}{7};y=\frac{25}{7};z=5\) hoặc \(x=\frac{11}{7};y=\frac{-25}{7};z=-5\)
Chúc bạn học tốt ~
\(x\left(x-y+z\right)=-11;y\left(y-x-z\right)=25;z\left(z+x-y\right)=35\)
Suy ra \(x\left(x-y+z\right)+y\left(y-z-x\right)+z\left(z+x-y\right)=49\)
\(\Leftrightarrow x\left(x-y+z\right)-y\left(x-y+z\right)+z\left(x-y+z\right)=49\)
\(\Leftrightarrow\left(x-y+z\right)\left(x-y+z\right)=49\)
\(\Leftrightarrow\left(x-y+z\right)^2=49\)
Do đó, \(x-y+z=\pm7\)
Suy ra.....
Suy ra cái gì?
Bạn chỉ mới chứng minh được \(x-y+z=\pm7\) thôi
Trong khi đề bài lại bảo tìm 3 số \(x;y;z\) cơ mà?
Chẳng lẽ chỉ cần \(x-y+z=\pm7\) là có thể suy ra \(x;y;z\) được hay sao?
Bạn giải gì thì giải cũng cần phải đủ ý chứ! CTV mà lại Nguyễn Xuân Sáng
\(\left(xy\right):\left(yz\right)=\frac{2}{3}:0,6\Rightarrow\frac{x}{z}=\frac{10}{9}\)=> \(x=\frac{10}{9}z\Rightarrow\frac{10}{9}z.z=0,625\Rightarrow z^2=\frac{9}{16}\Rightarrow z=\pm\frac{3}{4}\)
\(\left(yz\right):\left(zx\right)=0,6:0,625\Rightarrow\frac{y}{x}=\frac{24}{25}\)
Với z=3/4 => x, y
Với z=-3/4 => x,y
Câu b làm tương tự nhé :)
tìm x,y,z thuộc Q biết :
a)x(x-y+z)=-11
y(y-z-x)=25
z(z+x-y)=35
b)(c+2) mũ 2+(y-3) mũ 4 +(z-5) mũ 6 =0