K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

Áp dụng t/c dãy tỉ số bằng nhau: x/4=y/3=z/-2=(x2-y2+z2)/(42-32+(-2)2)=12/11.  =>x=12/11.4=48/11; y=12/11.3=36/11; z=12/11.(-2)=-24/11 . Ban co minh nhe

17 tháng 9 2015

\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

\(\Rightarrow\frac{2x^2}{2.3^2}=\frac{2y^2}{2.4^2}=\frac{3z^2}{3.5^2}\)

\(\Rightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)

theo tính chất dãy tỉ số bằng nhau:

\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)

=> \(\frac{2x^2}{18}=4\Rightarrow2x^2=18.4=72\Rightarrow x^2=36\Rightarrow x=\)+6

=> \(\frac{2y^2}{32}=4\Rightarrow2y^2=32.4=128\Rightarrow y^2=64\Rightarrow y=\)+8

=> \(\frac{3z^2}{75}=4\Rightarrow3z^2=75.4=300\Rightarrow z^2=100\Rightarrow z=\)+10

12 16 20 là sai, mình đã thi violympic và kết quả đấy sai rồi

23 tháng 7 2016

a.

\(x^2+\left(y+z\right)x+yz=x^2+xy+xz+yz=\left(x+y\right)x+\left(x+y\right)z=\left(x+y\right)\left(x+z\right)\)

b.

\(\left(x-y\right)^3=x^3-3x^{2y}+3xy^2-y^3\) (lập phương của một hiệu)

\(\Rightarrow x^3-y^3=\left(x-y\right)^3+3x^2y-3xy^2=\left(x-y\right)^3+3xy\left(x-y\right)=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]=\left(x-y\right)\left(x^2-2xy+y^2+3xy\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\)

Chúc bạn học tốt  ^^

23 tháng 7 2016

a.

\(x^2+\left(y+z\right)x+yz=x^2+xy+xz+yz=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)

b.

\(\left(x-y\right)^3=x^3-3x^2y+3xy^2-y^3\)(lập phương của một hiệu)

\(\Rightarrow x^3-y^3=\left(x-y\right)^3+3x^2y-3xy^2=\left(x-y\right)^3+3xy\left(x-y\right)=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]=\left(x-y\right)\left(x^2-2xy+y^2+3xy\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\)

Chúc bạn học tốt  ^^

24 tháng 7 2020

+) Tìm trên mạng thì đề thiếu xy + yz - zx = 7 

+) Nếu bổ sung đề: Tìm x; y ; z nguyên dương thì có thể làm như sau: 

Không mất tính tổng quát: g/s: \(x\ge y\ge z\)

Vì x2 + y2 + z2 = 14  => \(x^2\le14\Rightarrow x\le\sqrt{14}< 4\)  Vì x nguyên dương 

=> x \(\in\){ 1; 2; 3}

+) Với x = 3 => \(\hept{\begin{cases}y+z=3\\y^2+z^2=5\end{cases}\Rightarrow\hept{\begin{cases}y+z=3\\y^2\le5\end{cases}}\Rightarrow\hept{\begin{cases}y+z=3\\y\in\left\{1;2\right\}\end{cases}}}\)

Khi y = 2 => z = 1  ( thỏa mãn)

Khi y = 1 => z = 2 ( loại) 

+) Với x = 2 => \(\hept{\begin{cases}y+z=4\\y^2+z^2=10\end{cases}}\)=> Tồn tại 1 trong 2 số y; z lớn hơn 2 => lớn hơn x => loại 

+) Với x = 1 => Loại

Vậy nghiệm : ( 3; 2; 1) và các hoán vị của nó: ( 3; 1; 2) ; ( 2; 3; 1) ; ( 2; 1; 3 ) ; ( 1; 2; 3) ; ( 1; 3; 2)

DD
11 tháng 8 2021

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)

AH
Akai Haruma
Giáo viên
13 tháng 4 2022

Lời giải:

$A=13,5.\frac{-8}{27}.x^4.x^3.y^9.z^3.z^6$

$=-4x^7y^9z^9$

$B=\frac{-4}{7}.\frac{49}{4}.x^3.x^4.y^5.y^4.z^2.z^7$

$=-7.x^7.y^9.z^9$