Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có:
\(\frac{x}{1}=\frac{y}{4};3z=4y\) (-) \(\frac{z}{4}=\frac{y}{3}\)
Vậy ta có: \(\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)
(=) \(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)
Áp dụng t/c của dãy tỉ số = nhau, ta có:
\(\frac{4x}{12}+\frac{y}{12}+\frac{z}{16}=\frac{4x+y+z}{12+12+16}=\frac{8}{40}=0,2\)
=> x=0,2.3= 0,6
y=0,2.12= 2,4
z= 0,2.16= 3,2
Vậy x=0,6
y=2,4
z=3,2
<333
Trong mấy cái số viết liền ở câu a bạn thêm phân số nha, mình làm nhanh nên quên ghi.
a) \(\frac{x}{2}=\frac{y}{3};\frac{y}{3}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{9}=\frac{x-2y+3z}{2-6+9}=\frac{19}{5}\)
\(\frac{x}{2}=\frac{19}{5}\Rightarrow x=\frac{38}{5}\)
\(\frac{y}{3}=\frac{19}{5}\Rightarrow y=\frac{57}{5}\)
\(\frac{z}{3}=\frac{19}{5}\Rightarrow z=\frac{57}{5}\)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
x =8.2 =16
y =12.2 =24
z=15.2 =30
b) \(\frac{x}{3}=\frac{y}{-2}=\frac{z}{4}=\frac{4x+y-2z}{4.3+\left(-2\right)-2.4}=-\frac{18}{2}=-9\)
x =-9.3 =-27
y =-9.(-2) = 18
z =-9.4 = -36
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
1) Ta có: x/6 = y/3 = z/3 và 2x - 3y + 3z = 21
Aps dụng tính chất của dãy tỉ số bằng nhau:
x/6 = y/3 = z/3 = 2x/12 = 3y/9 = 3z/9 = (2x-3y+3z)/ (12 - 9 + 9) = 21/12 = 7/4
=> x/6 = 7/4 => x= 21/2
y/3 = 7/4 -> y= 21/4
z/3 = 7/4 -> z= 21/4
1) đề nó sao ý bạn , sao lại tìm z nữa lại 2/3 ?
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{-4}=\frac{4x}{4.2}=\frac{3y}{3.\left(-4\right)}=\frac{2z}{2.\left(-4\right)}=\frac{4x+3y+2z}{8+\left(-12\right)+\left(-8\right)}=\frac{1}{-12}=\frac{-1}{12}\)
\(\frac{x}{2}=\frac{-1}{12}\Rightarrow x=\frac{-1}{6}\)
\(\frac{y}{-3}=\frac{-1}{12}\Rightarrow y=\frac{1}{4}\)
\(\frac{z}{-4}=\frac{-1}{12}\Rightarrow z=\frac{1}{3}\)
Vậy x=-1/6 ; y=1/4 và z = 1/3
3) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-3}{5}\Rightarrow\frac{x+1+y+2+z-3}{3+4+5}=\frac{18+1+2-3}{12}=\frac{18}{12}=\frac{3}{2}\)
\(\frac{x+1}{3}=\frac{3}{2}\Rightarrow x=\frac{7}{2}\)
\(\frac{y+2}{4}=\frac{3}{2}\Rightarrow y=4\)
\(\frac{z-3}{5}=\frac{3}{2}\Rightarrow z=\frac{21}{2}\)
Vậy x=7/2 ; y=4 và z=21/2
4) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-\left(1+2+3\right)}{12}=\frac{24}{12}=2\)
\(\frac{x-1}{3}=2\Rightarrow x=7\)
\(\frac{y-2}{4}=2\Rightarrow y=10\)
\(\frac{z-3}{5}=2\Rightarrow z=13\)
Vậy x=7 ; y=10 và z=13
= (3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2
= (12x-8y)/16 = (6z-12x)/9
= (8y-6z)/4
= (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
Theo đề bài ta có:
\(\dfrac{4}{3x-2y}=\dfrac{3}{2z-4x}=\dfrac{2}{4y-3z}\)
\(\Rightarrow\)4(2z-4x) = 3(3x-2y)
3(4y-3z) = 2(2z-4x)
Ta có:
4(2z-4x) = 3(3x-2y)\(\Rightarrow\)8z-16x = 9x-6y\(\Rightarrow y=\dfrac{25x-8z}{6}\) (1)
\(\dfrac{3}{2z-4x}=\dfrac{2}{4y-3z}\Rightarrow3\left(4y-3z\right)=2\left(2z-4x\right)\)
\(\Rightarrow12y-9z=4z-8x\Rightarrow12y+8x=13z\) (2)
Thay (1) vào (2) ta có:
2(25x-8z)+8x = 13z\(\Rightarrow\)58x = 29z\(\Rightarrow\)z = 2x\(\Rightarrow\)y = \(\dfrac{3}{2}x\)
Thay vào đề bài x + y- z= - 10 ta tìm được:
x = -10; y = -20; z = -30
Ta có : \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\) với x+y-z = -10 (1)
\(\Rightarrow4\left(2z-4x\right)=3\left(3x-2y\right)\) ; \(3\left(4y-3z\right)=2\left(2z-4x\right)\)
Ta có :
+) \(4\left(2z-4x\right)=3\left(3x-2y\right)\Rightarrow8z-16x=9x-6y\)\(\Rightarrow y=\frac{25x-8z}{y}\left(2\right)\)
+) \(3\left(4y-3z\right)=2\left(2z-4x\right)\Rightarrow12y-9z=4z-8x\)\(\Rightarrow12y+8x=13z\left(3\right)\)
Thay (1) vào (2) ta có :
\(2\left(25x-8z\right)+8x=13z\)
\(\Rightarrow50x-16z+8x=13z\)
\(\Rightarrow58x=29z\)
\(\Rightarrow2x=z\) (4)
\(\Rightarrow y=\frac{3}{2}x\) (5)
thay (4) và (5) vào biểu thức x+y-z = -10 ta có :
\(x+y-z=-10\Leftrightarrow x+\frac{3}{2}x-2x=-10\)
\(\Rightarrow\frac{1}{2}x=-10\)
\(\Rightarrow x=-20\) ; \(y=\frac{3}{2}\left(-20\right)=-30\) ; \(z=-20\cdot2=-40\)
vậy \(x=-20;y=-30;z=-40\)