Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2010}+\frac{x+3}{2008}+\frac{x+4}{2007}+\frac{x+9}{2002}=-4\)
\(\Leftrightarrow\frac{x+1}{2010}+1+\frac{x+3}{2008}+1+\frac{x+4}{2007}+1+\frac{x+9}{2002}+1=-4+4\)
\(\Leftrightarrow\frac{x+2011}{2010}+\frac{x+2011}{2008}+\frac{x+2011}{2007}+\frac{x+2011}{2002}=0\)
\(\Leftrightarrow\left(x+2011\right)\left(\frac{1}{2010}+\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2002}\right)=0\)
\(\Leftrightarrow x+2011=0\)
\(\Leftrightarrow x=-2011\)
c) Ta có : \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\)\(\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
Mà : \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)
Nên x + 2009 = 0 => x = -2009
câu 2 :
\(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)
\(\Rightarrow x+2009=0\)
\(\Rightarrow x=-2009\)
Câu \(1.\) Giải phương trình
\(a.\) \(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\) \(\left(1\right)\)
Đặt \(y=x^2+x\) \(\left(2\right)\) thì khi đó, phương trình \(\left(1\right)\) sẽ có dạng:
\(y^2+4y=12\)
\(\Leftrightarrow\) \(y^2+4y-12=0\)
\(\Leftrightarrow\) \(y^2+4y+4-16=0\)
\(\Leftrightarrow\) \(\left(y+2\right)^2-4^2=0\)
\(\Leftrightarrow\) \(\left(y-2\right)\left(y+6\right)=0\)
\(\Leftrightarrow\) \(^{y-2=0}_{y+6=0}\) \(\Leftrightarrow\) \(^{y=2}_{y=-6}\)
Đến bước này, ta cần xét hai trường hợp sau:
\(\text{*)}\) \(TH_1:\) Với \(y=2\) thì phương trình \(\left(2\right)\) trở thành:
\(x^2+x=2\)
\(\Leftrightarrow\) \(x^2+x-2=0\)
\(\Leftrightarrow\) \(\left(x^2-1\right)+x-1=0\)
\(\Leftrightarrow\) \(\left(x-1\right)\left(x+1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\) \(\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\) \(^{x-1=0}_{x+2=0}\) \(\Leftrightarrow\) \(^{x=1}_{x=-2}\) (dùng dấu ngoặc nhọn nhé bạn!)
\(\text{*)}\) \(TH_2:\) Với \(y=-6\) thì phương trình \(\left(2\right)\) trở thành:
\(x^2+x=-6\)
\(\Leftrightarrow\) \(x^2+x+6=0\)
\(\Leftrightarrow\) \(x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{23}{4}=0\)
\(\Leftrightarrow\) \(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\) \(\left(3\right)\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\) \(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\ge\frac{23}{4}>0\)
Do đó, phương trình \(\left(3\right)\) vô nghiệm!
Vậy, tập nghiệm của phương trình \(\left(1\right)\) là \(S=\left\{-1;2\right\}\)
Câu \(1.\) Giải phương trình!
\(b.\)
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\) \(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\) \(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\) \(\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\) \(\left(4\right)\)
Do \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\) nên từ \(\left(4\right)\) suy ra
\(x+2009=0\) \(\Leftrightarrow\) \(x=-2009\)
Vậy, \(S=\left\{-2009\right\}\)
\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)
\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)
\(\text{Giải}\)
\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)
\(\frac{x+4}{2007}+\frac{x+8}{2003}=\frac{x+1}{2010}=\frac{x+3}{2008}\)
\(\Leftrightarrow\frac{x+4}{2007}=\frac{x+1}{2010}\)
\(\Leftrightarrow\left(x+4\right)2010=\left(x+1\right)2007\)
\(\Leftrightarrow2010x+8040=2007x+2007\)
\(\Leftrightarrow2010x-2007x=2007-8040\)
\(\Leftrightarrow3x=-6033\)
\(\Leftrightarrow x=-2011\)
\(\frac{x+4}{2007}+\frac{x+8}{2003}=\frac{x+1}{2010}+\frac{x+3}{2008}\)
=>\(\left(\frac{x\text{+4}}{2007}+1\right)+\left(\frac{x+8}{2003}+1\right)=\left(\frac{x+1}{2010}+1\right)+\left(\frac{x+3}{2008}+1\right)\)
=>\(\frac{x+2011}{2007}+\frac{x+2011}{2003}=\frac{x+2011}{2010}+\frac{x+2011}{2008}\)
=>\(\frac{x+2011}{2007}+\frac{x+2011}{2003}-\frac{x+2011}{2010}-\frac{x+2011}{2008}=0\)
=>\(x+2011\left(\frac{1}{2007}+\frac{1}{2003}-\frac{1}{2010}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2007}+\frac{1}{2003}-\frac{1}{2010}-\frac{1}{2008}\ne0\)
=> x+2011=0
=>x=-2011
Vậy x = -2011