K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}=\frac{x+y+z+11+12+13}{13+14+15}=\frac{42}{42}=1\)

\(\Rightarrow x+11=13;y+12=14;z+13=15\)

sau đó r tính ra th

6 tháng 10 2017

\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}.\)

\(\Rightarrow\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}=\frac{x+11+y+12+z+13}{13+14+15}=\frac{\left(x+y+z\right)+\left(11+12+13\right)}{42}\)

\(=\frac{6+36}{42}=\frac{42}{42}=1\)  ( Áp dụng tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}\frac{x+11}{13}=1\\\frac{y+12}{14}=1\\\frac{z+13}{15}=1\end{cases}}\Rightarrow\hept{\begin{cases}x+11=13\\y+12=14\\z+13=15\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=2\\z=2\end{cases}}\)

Vậy \(x=y=z=2\)

6 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}=\frac{x+11+y+12+z+13}{13+14+15}\)

\(=\frac{\left(x+y+z\right)+\left(11+12+13\right)}{13+14+15}=\frac{16+36}{42}=\frac{42}{42}=1\)

\(\Rightarrow\frac{x+11}{13}=1\Rightarrow x+11=13\Rightarrow x=13-11=2\)

\(\Rightarrow\frac{y+12}{14}=1\Rightarrow y+12=14\Rightarrow y=14-12=2\)

\(\Rightarrow\frac{z+13}{15}=1\Rightarrow z+13=15\Rightarrow z=15-13=2\)

Vậy \(x=y=z=2\)

17 tháng 11 2016

Theo đề bài :

\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{13}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{13}=\frac{x+y+z+36}{40}=\frac{21}{20}\)

=> \(\frac{x+11}{13}=\frac{21}{20}\)

=> \(\frac{y+12}{14}=\frac{21}{20}\)

=> \(\frac{z+13}{13}=\frac{21}{20}\)

Rồi đến đây bạn tự làm nốt đi ha !!!

a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)

Tự làm nốt và kết luận 

b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)

Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)

Vậy ....

15 tháng 7 2019

Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{35}=\frac{y}{42}\)

         \(\frac{y}{7}=\frac{z}{8}\) => \(\frac{y}{42}=\frac{z}{48}\)

=> \(\frac{x}{35}=\frac{y}{42}=\frac{z}{48}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{x}{35}=\frac{y}{42}=\frac{z}{48}=\frac{x+y+z}{35+42+48}=\frac{250}{125}=2\)

=> \(\hept{\begin{cases}\frac{x}{35}=2\\\frac{y}{42}=2\\\frac{z}{48}=2\end{cases}}\)  =>  \(\hept{\begin{cases}x=2.35=70\\y=2.42=84\\z=2.48=96\end{cases}}\)

vậy ...

24 tháng 1 2017

a) Ta đặt: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{-2}=k\)

\(\Rightarrow x=4k;y=3k;z=-2k\)

\(\Rightarrow xyz=\left(4.3.-2\right).k^3\)

\(\Rightarrow xyz=\left(-24\right).k^3\)

\(\Rightarrow k^3=240:\left(-24\right)=-10\)

\(\Rightarrow\)(đề sai, không ra số tự nhiên)

24 tháng 1 2017

nếu đề cho là tìm thui thì là thuộc Z đó bạn

24 tháng 7 2019

1)

a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).

=> \(\frac{x}{7}=\frac{y}{13}\)\(x+y=60.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(21;39\right).\)

c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)

=> \(\frac{x}{9}=\frac{y}{10}\)\(y-x=120.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)

\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1080;1200\right).\)

d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(x+y+z=81.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)

\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)

Mình chỉ làm 3 câu thôi nhé, dài quá bạn.

Chúc bạn học tốt!

13 tháng 3 2016

b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng dãy tỉ số bằng nhau :

\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x = 2 . 10 = 20

y = 2 . 15 = 30

z = 2 . 21 = 42 

Vậy : ..... 

13 tháng 3 2016

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

MSC của y là : 20

Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng dãy tỉ số bằng nhau, ta có: 

\(2x+3y-z=186\)

\(\Rightarrow2.15+3.20-28=30+60-28=62\)

\(\frac{186}{62}=3\)

 x = 3 . 15 = 45

 y = 3 . 20 = 60

 z = 3 . 28 = 84

Vậy: ..... 

25 tháng 2 2019

Với \(x+y+z=0\) \(\Rightarrow x=y=z=0\) (trái với đk đề bài)

Với \(x+y+z\ne0\),áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\)

Mà x+y+z=1/2. Thay vào tìm đc x;y;z =]]