(x + 1)(2y –...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2022

Ta thấy (x+1)(2y-5)=143=11.13=13.11=143.1=1.143

Suy ra ta có 4 trường hợp sau:

-Nếu x+1=11suy ra x=10 ; 2y-5=13 suy ra y=9

-Nếu x+1=13 suy ra x=12 ; 2y-5=11 suy ra y=8

-Nếu x+1=143 suy ra x=142 ; 2y-5=1 suy ra y=3

-Nếu x+1=1 suy ra x=0 ; 2y-5=143 suy ra y=74 

Vậy x=10 thì y=9

       x=12 thì y=8

       x=142 thì y=3

       x=0 thì y=74

31 tháng 5 2015

Ta có : \(143=11.13=13.11=1.143=143.1\)

Từ đây ta có bảng :

    

x + 1      

   11

    13       

    1        

    143     

    x

   10          

    12

    0

    142

 2y – 5  

   13

    11

   143

     1

    y

   9

     8

    74

     3

 

5 tháng 6 2018

x, y \(\in\) N

Xét : (x + 1) . (2y - 5) = 143 = 13 . 11 = 11 . 13 = 143 . 1 = 1 . 143

TH1 :

\(\left\{{}\begin{matrix}x+1=13\\2y-5=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=8\end{matrix}\right.\)

TH2 :

\(\left\{{}\begin{matrix}x+1=11\\2y-5=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=9\end{matrix}\right.\)

TH3 :

\(\left\{{}\begin{matrix}x+1=143\\2y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=142\\y=3\end{matrix}\right.\)

TH4 :

\(\left\{{}\begin{matrix}x+1=1\\2y-5=143\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=74\end{matrix}\right.\)

Vậy .................... (tự kết luận)

28 tháng 8 2016

\(\frac{x-1}{9}=\frac{8}{3}\Rightarrow\)\(\frac{x-1}{9}=\frac{24}{9}\Rightarrow x-1=24\)

                                        x=24+1

                                        x=25

Vậy x=25

 

28 tháng 8 2016

\(\frac{x-1}{9}=\frac{8}{3}\)

\(\Leftrightarrow\left(x-1\right):9=\frac{8}{3}\)

\(\Leftrightarrow\left(x-1\right)=24\)

\(\Leftrightarrow x=24+1\)

\(\Leftrightarrow x=25\)

 

 

 

 

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

7 tháng 5 2016

y=\(\frac{x^4-2x^3+1}{x^2+1}\)=\(x^2\)-2x-1 + \(\frac{2x+2}{x^2+1}\)=\(x^2\)-2x-1 + \(\frac{2\left(x+1\right)}{x^2+1}\)

vì x và y đều nguyên nên \(x^2\)+1 phải là ước của x+1

vì x+1 <= \(x^2\)+1 

nên ta có \(x^2\)+1 = x+1

          =>  x=0 hoặc x=1

với x=0 thì y=1

với x=1 thì y =0

vậy ta có (x;y)=(0;1); (1;0)

5 tháng 8 2020

Bài làm:

a) Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x}{7}=\frac{y}{5}=\frac{z}{6}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)

\(\Rightarrow\hept{\begin{cases}x=28\\y=20\\z=24\end{cases}}\)

b) Ta có: \(\frac{x}{y}=\frac{3}{5}\Leftrightarrow\frac{x}{3}=\frac{y}{5}\) và \(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=\frac{9}{2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{45}{2}\\z=36\end{cases}}\)

5 tháng 8 2020

a) \(\hept{\begin{cases}\frac{x}{7}=\frac{y}{5}=\frac{z}{6}\\x-2y+3z=60\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}\\x-2y+3z=60\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)

\(\Rightarrow\hept{\begin{cases}x=28\\y=20\\z=24\end{cases}}\)

b) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\\frac{y}{z}=\frac{5}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\\frac{y}{5}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\\x+y+z=72\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=\frac{9}{2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{45}{2}\\z=36\end{cases}}\)

6 tháng 8 2020

a) \(\frac{x}{7}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)

\(\Rightarrow\hept{\begin{cases}x=4\cdot7=28\\y=4\cdot5=20\\z=4\cdot6=24\end{cases}}\)

b) ta có \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\\\frac{y}{x}=\frac{5}{8}\Rightarrow\frac{x}{8}=\frac{y}{5}\end{cases}\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{8}}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=4,5\)

\(\Rightarrow\hept{\begin{cases}x=4,5\cdot3=13,5\\y=4,5\cdot5=22,5\\z=4,5\cdot8=36\end{cases}}\)

áp dụng tính chất dãy tỉ số bằng ta đc

x/7=y/5=z/6=x/7=y/-10=z/18=y+z/-10+18=60/8=7,5

x=7.7,5=52,5

y=7.-10=-70

z=7.18=126

vậy  x=52,5     y=-70         z=126

31 tháng 7 2017

Cho mk hỏi trước dấu trị tuyện đối là dấu j z ?

7 tháng 8 2017

ko có dấu j cả. Thôi ko cần giải đâu thầy mk giải rùi