K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

\(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)

\(\Rightarrow\frac{x^2}{2}-\frac{x^2}{5}+\frac{y^2}{3}-\frac{y^2}{5}+\frac{z^2}{4}-\frac{z^2}{5}=0\)

\(\Rightarrow\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\Rightarrow x=y=z=0\)

6 tháng 6 2015

1) x2-4x+5+y2+2y=0

<=>x2-4x+4+y2+2y+1=0

<=>(x-2)2+(x+1)2=0

<=>x-2=0 và x+1=0

<=>x=2    và x=-1

2)2p.p2-(p3-1)+(p+3)2p2-3p5 

<=>2p3-p3+1+2p3+6p2-3p5

<=>3p3+6p2-3p5+1

3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1

                                     =1

4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3

                                           =-18x2+3(đề sai)

 b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x

                                                    =16

Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x

5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0

b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0

6)M+(12x4-15x2y+2xy2+7)=0

<=>M                              =-(12x4-15x2y+2xy2+7)

<=>M                              =-12x4+15x2y-2xy2-7

24 tháng 5 2017

lười thế bạn nhân phá ra là được mà

24 tháng 5 2017

a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Biến đổi vế trái ta được :

\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)

\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)

\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

22 tháng 7 2017

a, \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)( 1 )

Nhận xét  :   \(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2\Rightarrow x^3+y^3=\left(x+y\right)^3-3x^2-3xy^2\)

Thay vào ( 1 ) ta có  :  

\(\left(x+y\right)^3+c^3-3x^2y-3xy^2-3xyz\)

\(=\left(z+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(z+y+z\right)\left(z^2+2xy+y^2-xz-yz+z^2\right)-3xyz\left(z+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(z^2+x^2+y^2-xy-yz-xz\right)\)

Vì theo đầu bài ta có: \(x+y+z=0\)nên ta có ( DPCM ) ..... học cho tốt nhé!

a) Ta có: \(VP=x^2+y^2+z^2-2xy+2yz-2zx\)

\(=\left(x^2-xy-xz\right)+\left(y^2-xy+yz\right)+\left(z^2-yz-zx\right)\)

\(=x\left(x-y-z\right)+y\left(y-x+z\right)+z\left(z-y-x\right)\)

\(=x\left(x-y-z\right)-y\left(x-y-z\right)-z\left(x-y-z\right)\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=\left(x-y-z\right)^2=VT\)(đpcm)

b) Ta có: \(VP=x^2+y^2+z^2+2xy-2yz-2zx\)

\(=\left(x^2+xy-zx\right)+\left(y^2+xy-2yz\right)+\left(z^2-yz-zx\right)\)

\(=x\left(x+y-z\right)+y\left(x+y-z\right)+z\left(z-y-x\right)\)

\(=\left(x+y-z\right)\left(x+y\right)-z\left(x+y-z\right)\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=\left(x+y-z\right)^2=VT\)(đpcm)

c) Ta có: \(VP=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)=VT\)(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5=VP\)(đpcm)

Bạn tách ra đi bạn

4 tháng 7 2016

bài 1 phân tích da thức hả bạn