\(\frac{3x+y}{47}=\frac{x+y}{-17}=\frac{-2}{x^2}=\frac{-xz^2-yz^2}{z^2+1}\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

Từ \(\frac{3x+y}{47}=\frac{x+y}{-17}=\frac{-2}{x^2}=\frac{-xz^2-yz^2}{z^2+1}\)(1)

=> \(\frac{x+y}{-17}=\frac{-xz^2-yz^2}{z^2+1}\Rightarrow\frac{x+y}{-17}=\frac{-z^2\left(x+y\right)}{z^2+1}\)

=> (z2 + 1)(x + y)  = 17z2(x + y)

=> z2 + 1 = 17z2

=> 16z2 = 1

=> \(z^2=\frac{1}{16}\Rightarrow\orbr{\begin{cases}z=\frac{1}{4}\\z=-\frac{1}{4}\end{cases}}\)

Từ (1) => \(\frac{3x+y}{47}=\frac{x+y}{-17}=\frac{3x+y-x-y}{47+17}=\frac{2x}{64}=\frac{x}{32}\)

Kết hợp với đề bài => \(\frac{x}{32}=\frac{-2}{x^2}\Rightarrow x^3=-64\Rightarrow x=-4\)

\(\frac{3x+y}{47}=\frac{x+y}{-17}\Rightarrow-17\left(3x+y\right)=47\left(x+y\right)\)

=> - 51x - 17y = 47x + 47y

=> -51x - 47x = 17y + 47y

=> -98x = 64y

=> -49x = 32y

=> -49 x (-4) = 32y

=> 196 = 32y

=> y = 6,125

Vậy các cặp (x;y;z) thỏa mãn là (-4 ;  6,125 ; -1/4) ; (-4 ; 6,125 ; 1/4)

4 tháng 8 2020

Bạn tham khảo câu trả lời của anh Phan Thanh Tịnh nhé 

vô phần thống kê hỏi đáp của mình để coi hình nhéolmm

5 tháng 8 2020

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)

\(\Leftrightarrow\left(x^2-yz\right)\left(y-xyz\right)=\left(y^2-xz\right)\left(x-xyz\right)\)

\(\Leftrightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+xy^3z+x^2z-x^2yz^2=0\)

\(\Leftrightarrow xy\left(x-y\right)-xyz\left(x^2-y^2\right)+z\left(x^2-y^2\right)-xyz^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2\right]=0\)

\(\Leftrightarrow xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2=0\left(x\ne y\Rightarrow x-y\ne0\right)\)

\(\Leftrightarrow xy+yz+xz=xyz\left(x+y\right)+xyz^2\)

\(\Leftrightarrow\frac{ay+yz+xz}{xyz}=\frac{xyz\left(x+y\right)+xyz^2}{xyz}\left(xyz\ne0\right)\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\)

15 tháng 6 2018

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1) 

=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)

a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] => 
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2) 
Thực hiện tương tự ta cũng có 
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3) 
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4) 
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.

10 tháng 1 2020

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{xz}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(1\right)\)

Ta có: \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{xz}{cx+az}.\)

\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+cxy}=\frac{xyz}{cxy+ayz}.\)

\(\Rightarrow ayz+bxz=bxz+cxy=cxy+ayz\)

\(\Rightarrow\left\{{}\begin{matrix}ayz+bxz=bxz+cxy\\ayz+bxz=cxy+ayz\\bxz+cxy=cxy+ayz\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ayz=cxy\\bxz=cxy\\bxz=ayz\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}az=cx\\bz=cy\\bx=ay\end{matrix}\right.\left(2\right)\)

Thay (2) vào (1) ta được:

\(\frac{xy}{ay+ay}=\frac{yz}{bz+bz}=\frac{xz}{cx+cx}\)

\(\Rightarrow\frac{xy}{2ay}=\frac{yz}{2bz}=\frac{xz}{2cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right).\)

\(\Rightarrow\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\frac{\left(x^2+y^2+z^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}=\frac{1.\left(x^2+y^2+z^2\right)}{4.\left(a^2+b^2+c^2\right)}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{1}{4}\left(4\right).\)

Từ (3) và (4)

\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2a}=\frac{1}{4}\\\frac{y}{2b}=\frac{1}{4}\\\frac{z}{2c}=\frac{1}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{4}.2a\\y=\frac{1}{4}.2b\\z=\frac{1}{4}.2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{a}{2}\\y=\frac{b}{2}\\z=\frac{c}{2}\end{matrix}\right.\)

Vậy \(x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\left(x,y,z\ne0\right);\left(a,b,c\ne0\right).\)

Chúc bạn học tốt!

28 tháng 2 2019

Ta có: \(z^2=2\left(xz+yz-xy\right)=2xz+2yz-2xy\)

Xét:

\(x^2+\left(x-z\right)^2=x^2+z^2-z^2+\left(x-z\right)^2\)\(=\left(x-z\right)^2+2xz-\left(2xz+2yz-2xy\right)+\left(x-z\right)^2\)

\(=\left(x-z\right)^2+2xy-2yz+\left(x-z\right)^2=\left(x-z\right)^2+2y\left(x-z\right)+\left(x-z\right)^2\)

\(=\left(x-z\right)\left(x-z+2y+x-z\right)=\left(x-z\right)\left(2x+2y-2z\right)\)                                    (1)

Xét:

\(y^2+\left(y-z\right)^2=y^2+z^2-z^2+\left(y-z\right)^2\)\(=\left(y-z\right)^2+2yz-\left(2xz+2yz-2xy\right)\)

\(=\left(y-z\right)^2+2xy-2xz+\left(y-z\right)^2=\left(y-z\right)^2+2x\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(y-z\right)\left(y-z+2x+y-z\right)=\left(y-z\right)\left(2x+2y-2z\right)\)                                      (2)

Từ (1); (2) => \(\frac{x^2+\left(x-z\right)^2}{y^2+\left(y-z\right)^2}=\frac{\left(x-z\right)\left(2x+2y-2z\right)}{\left(y-z\right)\left(2x+2y-2z\right)}=\frac{x-z}{y-z}\) \(\left(ĐPCM\right)\)