\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)và x2017-y
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\\ \Rightarrow\left(\dfrac{x}{y}\right)^3=\dfrac{x}{y}.\dfrac{y}{z}.\dfrac{z}{x}=1\\ \Rightarrow\dfrac{x}{y}=1\\ \Rightarrow x=y\\ \Rightarrow y^{2017}-y^{2018}=0\\ \Rightarrow y^{2017}\left(1-y\right)=0\\ \Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\)

29 tháng 12 2017

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\Rightarrow\left(\dfrac{x}{y}\right)^3=1\Leftrightarrow\dfrac{x}{y}=1\Rightarrow x=y\)

\(x^{2017}-y^{2018}=1\Rightarrow y^{2017}\left(1-y\right)=1\)

\(\Rightarrow\left\{{}\begin{matrix}y^{2017}=1\\1-y=1\end{matrix}\right.\Rightarrow y=\left\{{}\begin{matrix}1\\0\end{matrix}\right.\)

Mà x = y

\(\Rightarrow x=\left\{{}\begin{matrix}1\\0\end{matrix}\right.\)

14 tháng 8 2017

Ta có:\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+x\right)}{x+y+z}=2\)(theo tính chất của DTSBN)

Suy ra:\(\dfrac{1}{x+y+z}=2\)=>x+y+z=\(\dfrac{1}{2}\)

=>y+z=\(\dfrac{1}{2}\)-x

Tương tự, ta có được:

x+z=\(\dfrac{1}{2}-y\)

x+y=\(\dfrac{1}{2}-z\)

Thay các kết quả vừa tìm được, ta có:

\(\dfrac{0,5-x+1}{x}=\dfrac{0,5-y+2}{y}\dfrac{0,5-z-3}{z}=2\)=>\(\dfrac{1,5-x}{x}=\dfrac{2,5-y}{y}=\dfrac{-2,5-z}{z}=2\)

=>x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)

Thay x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)vào biểu thức A, ta có:

A=2018.\(\dfrac{1}{2}\)+\(\left(\dfrac{5}{6}\right)^{2017}\)+\(\left(\dfrac{-5}{6}\right)^{2017}\)

=>A=1009+\(\left[\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\right]\)

=>A=1009+0

=>A=1009

Vậy giá trị của biểu thức A là 1009

14 tháng 8 2017

Thanks crush nka !!

22 tháng 12 2017

5a.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)

b.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)

20 tháng 2 2020

Bạn ơi bạn giải dc chưa giúp mình với ạ

17 tháng 10 2017

a) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\)\(x-y+z=-49\)

Ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)

\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)

Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)

Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)

b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)\(x^2-y^2+2z^2=10\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}=\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{10}{27}\)

Vậy ... (tự tính x, y, z nhé!)

18 tháng 10 2018

vãi ***** làm bài

6 tháng 6 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(=\dfrac{1}{x+y+z}\)

\(\Rightarrow\dfrac{1}{x+y+z}=2\)\(x+y+z=\dfrac{1}{2}\)

+) \(\dfrac{y+z+1}{x}=2\)

\(\Rightarrow y+z+1=2x\)

\(\Rightarrow x+y+z+1=3x\)

\(\Rightarrow3x=1+\dfrac{1}{2}\)

\(\Rightarrow3x=\dfrac{3}{2}\Rightarrow x=\dfrac{1}{2}\)

Tương tự như trên, ta tìm được \(y=\dfrac{5}{6},z=\dfrac{-5}{6}\)

Thay giá trị của x, y, z vào A ta được:

\(A=2016.\dfrac{1}{2}+\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\)

\(=1008\)

Vậy A = 1008

3 tháng 1 2018

Theo tính chất của dãy tỷ số bằng nhau, ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1.\) Suy ra  x = y = z .

mặt khác, theo giả thiết:   x2017 = y2005  Nên   x = y = 1. Vì :

            - Nếu  x = y > 1  :      x2017> x2005 = y2005

            - Nếu  x = y < 1 thì  :     x2017 < x2005 = y2005 

Vậy x = y = z = 1

23 tháng 10 2018

\(\dfrac{x}{z}=\dfrac{z}{y}\Rightarrow\dfrac{x.z}{z.y}=\dfrac{x}{y}=\dfrac{x^2}{z^2}=\dfrac{z^2}{y^2}=\dfrac{x^2+z^2}{y^2+z^2}\)

23 tháng 10 2018

đăt \(\dfrac{x}{z}=\dfrac{z}{y}=k\)

=>\(\left\{{}\begin{matrix}x=zk\\z=yk\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=yk^2\\z=yk\end{matrix}\right.\)

ta có :\(\dfrac{x}{y}=\dfrac{yk^2}{y}=k^2\left(1\right)\)

lại có \(\dfrac{x^2+z^2}{y^2+z^2}=\dfrac{y^2k^4+y^2k^2}{y^2+y^2k^2}=\dfrac{y^2k^2.\left(k^2+1\right)}{y^2.\left(1+k^2\right)}=k^2\left(2\right)\)

từ (1) và (2) => ĐPCM

23 tháng 12 2017

bài này dễ mà b

\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\)

=> \(^{\dfrac{x_2}{4}}\)=\(\dfrac{y^2}{9}\)=\(\dfrac{x^2}{16}\)

=> ..............= \(\dfrac{3x^2}{48}\)

sau đó : áp dụng t/c dãy tỉ số = nhau ta có :

\(\dfrac{x^2}{4}\)=\(\dfrac{y^2}{9}\)=\(\dfrac{3x^2}{48}\)= \(\dfrac{x^2-y^2+3x^2}{4-9+48}\)= \(\dfrac{172}{43}\)=4

sau đó tíh kết qả các phân số trên

-Tíh cho mìh nha pạnyeu

23 tháng 12 2017

Bạn ơi, tại sao x2/4 lại bằng x2/16 vậy?