Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{3}=\dfrac{y-5}{7}=\dfrac{z+2}{3}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y-10}{14}=\dfrac{5z+10}{15}\)
\(x+2y=5z\Leftrightarrow x+2y-5z=0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{2y-10}{14}=\dfrac{5z+10}{15}=\dfrac{x+2y-10-5z-10}{3+14-15}\)
\(=\dfrac{-20}{2}=-10\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=-65\\z=-32\end{matrix}\right.\)
Vậy...
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x-y}{5}=\dfrac{3x-2z}{15}=\dfrac{2x-y-3x+2z}{5-15}=\dfrac{2\left(x+z\right)-4y}{-10}=\dfrac{4y-4y}{-10}=0\)
Do đó:
\(2x-y=0\Rightarrow2x=y\Rightarrow x=\dfrac{y}{2}\)
\(3y-2z=0\Rightarrow3y=2z\Rightarrow\dfrac{y}{2}=\dfrac{z}{3}\)
Vậy \(x=\dfrac{y}{2}=\dfrac{z}{3}\)
Từ x + z = 2y ta có:
x – 2y + z = 0 hay 2x – 4y + 2z = 0 hay 2x – y – 3y + 2z = 0 hay 2x – y = 3y – 2z
Vậy nếu: \(\dfrac{2x-y}{5}=\dfrac{3y-2z}{15}\) thì: 2x – y = 3y – 2z = 0 ﴾vì 5 \(\ne\)15.﴿
Từ 2x – y = 0 suy ra: x = \(\dfrac{1}{2}y\)
Từ 3y – 2z = 0 và x + z = 2y. x + z + y – 2z = 0 hay \(\dfrac{1}{2}y\) + y – z = 0 hay \(\dfrac{3}{2}y\) ‐ z = 0 hay y = \(\dfrac{2}{3}z\) . suy ra: x = \(\dfrac{1}{3}z\) .
Vậy các giá trị x, y, z cần tìm là: {x = \(\dfrac{1}{3}z\) ; y = \(\dfrac{2}{3}z\) ; với z \(\in\) R } hoặc {x =\(\dfrac{1}{2}y\) ; z = \(\dfrac{3}{2}y\);với y \(\in\) R} hoặc { y = 2x; z = 3x ;với x \(\in\)R}
Ta có:\(\dfrac{2x-y}{5}=\dfrac{3y-2z}{15}=\dfrac{2x-y-3y+2z}{5-15}=\dfrac{2x-2y+2z}{-10}\)
(Áp dụng tính chất dãy tỷ số = nhau)
=>\(\dfrac{2\left(x+z-y\right)}{-10}=\dfrac{x+z-y}{-5}=\dfrac{2y-y}{-5}\)
=>x=y. Mik mới làm đc nửa ko bt đúng sai thế nào!! Mai mik giải cho.
À mik nhớ rồi nạ!!Từ \(\dfrac{x+z-y}{-5}=\dfrac{2y-y}{-5}=>x+z-y=2y-y\)
=>x+z=2y(Đpcm)
a) Ta có: \(\left|2x+5\right|+\left|2x-3\right|=8\)
\(\Rightarrow\left|2x+5\right|+\left|3-2x\right|=8\)
Nhận thấy \(\left[{}\begin{matrix}\left|2x+5\right|\ge2x+5\forall x\\\left|3-2x\right|\ge3-2x\forall x\end{matrix}\right.\)
\(\Rightarrow\left|2x+5\right|+\left|3-2x\right|\ge2x+5+3-2x\forall x\)
\(\Rightarrow\left|2x+5\right|+\left|3-2x\right|\ge8\)
Dấu \("="\) xảy ra khi \(\left[{}\begin{matrix}2x+5\ge0\\3-2x\ge0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x\ge-5\\2x\le3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\ge\dfrac{-5}{2}\\x\le\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow\dfrac{-5}{2}\le x\le\dfrac{3}{2}\)
Vậy \(\dfrac{-5}{2}\le x\le\dfrac{3}{2}.\)
a)Xét \(x=\dfrac{y}{2}=\dfrac{z}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=k\\y=2k\\z=3k\end{matrix}\right.\) (1)
Thay (1) vào 4x - 3y + 2z = 36
\(\Rightarrow4.k-3.2k+2.3k=36\)
\(\Rightarrow4k-6k+6k=36\Rightarrow4k=36\)
\(\Rightarrow k=\dfrac{36}{4}=9\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=2.4=8\\z=3.4=12\end{matrix}\right.\)
Vậy...............................................................
b) Xét \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\z=7k\end{matrix}\right.\) (2)
Thay (2) vào 2x - 3z = 44
\(\Rightarrow2.5k-3.7k=44\)
\(\Rightarrow-11k=44\Rightarrow k=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.\left(-4\right)=-20\\y=4.\left(-4\right)=-16\\z=7.\left(-4\right)=-28\end{matrix}\right.\)
Vậy,................................................
c) Xét \(\dfrac{-x}{7}=\dfrac{y}{11}=\dfrac{-z}{5}=\dfrac{x}{-7}=\dfrac{z}{-5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-7k\\y=11k\\z=-5k\end{matrix}\right.\) (3)
Thay (3) vào -3z - 2y - x = -88
\(\Rightarrow-3.\left(-5k\right)-2.11k-\left(-7k\right)=-88\)
\(\Rightarrow15k-22k+7k=-88\Rightarrow0k=88\)
\(\Rightarrow k\in\varnothing\)
Suy ra: Không có cặp ( x; y; z) thỏa mãn
Vậy.................................................................
d) Xét \(\dfrac{y}{12}=\dfrac{x}{-5}=\dfrac{z}{11}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5k\\y=12k\\z=11k\end{matrix}\right.\) (4)
Thay (4) vào 5y - 2z = 114
\(\Rightarrow6.12k-2.11k=114\)
\(\Rightarrow50k=114\Rightarrow k=2,28\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5.2,28=-11,4\\y=12.2,28=27,36\\z=25,08\end{matrix}\right.\)
Vậy..............................................
e) Xét \(\dfrac{x}{25}=\dfrac{y}{17}=\dfrac{z}{32}=k\)
\(\left\{{}\begin{matrix}x=25k\\y=17k\\z=32k\end{matrix}\right.\) (5)
Thay (5) vào -2z + 3y - 4x = -452
\(\Rightarrow\left(-2\right).32k+3.17k-4.25k=-452\)
\(\Rightarrow-113k=-452\Rightarrow k=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=25.5=100\\y=17.4=68\\z=32.4=128\end{matrix}\right.\)
Vậy.......................................................
a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(x=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\\ \Rightarrow\dfrac{4x}{4}-\dfrac{3y}{6}+\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{36}{4}=9\)
+) \(\dfrac{x}{1}=9\Rightarrow x=9\)
+) \(\dfrac{y}{2}=9\Rightarrow y=18\)
+) \(\dfrac{z}{3}=9\Rightarrow z=27\)
Vậy x = 9; y = 18; z = 27.
tương tự
a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{10}=\dfrac{z}{21}=\dfrac{5x+y-2z}{6\cdot5+10-2\cdot21}=\dfrac{28}{-2}=-14\)
\(\Rightarrow x=\left(-14\right)6=-84;y=\left(-14\right)10=-140;z=\left(-14\right)21=-294\)
Vậy \(x=-84;y=-140;z=-294\)
b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)
\(x=2\cdot15=30;y=2\cdot20=40;z=2\cdot28=56\)
Vậy \(x=30;y=40;z=56\)
c. Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{12\left(x+y+z\right)}{49}=\dfrac{12\cdot49}{49}=12\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{12x}{18}=12\\\dfrac{12y}{16}=12\\\dfrac{12z}{15}=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12x=216\\12y=192\\12z=180\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)
Vậy \(x=18;y=16;z=15\)
d. Ta có:
\(3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\)
\(7y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
\(\Rightarrow x=2\cdot10=20;y=2\cdot15=30;z=2\cdot21=42\)
Vậy \(x=20;y=30;z=42\)
a) \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\Leftrightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\)\(=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\)
\(\Rightarrow\dfrac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)
\(\Rightarrow\dfrac{y}{6}=2\Rightarrow y=2.6\Rightarrow y=12\)
\(\Rightarrow\dfrac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)
Vậy \(x=20;y=12\) và \(z=42\)
a,
\(\dfrac{2x}{3y}=\dfrac{-1}{3}\\ \Rightarrow\dfrac{2x}{-1}=\dfrac{3y}{3}\\ \Leftrightarrow\dfrac{-2x}{1}=\dfrac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{-2x}{1}=\dfrac{3y}{3}=\dfrac{-2x+3y}{1+3}=\dfrac{7}{4}\)
\(\dfrac{-2x}{1}=\dfrac{7}{4}\Rightarrow-2x=\dfrac{7}{4}\Rightarrow x=\dfrac{7}{4}:\left(-2\right)=\dfrac{-7}{8}\\ \dfrac{3y}{3}=\dfrac{7}{4}\Rightarrow y=\dfrac{7}{4}\)
Vậy \(x=\dfrac{-7}{8};y=\dfrac{7}{4}\)
b,
\(\dfrac{x}{3}=\dfrac{y}{4}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{6}=\dfrac{5y}{20}=\dfrac{2x+5y}{6+20}=\dfrac{10}{26}=\dfrac{5}{13}\\ \dfrac{x}{3}=\dfrac{2x}{6}=\dfrac{5}{13}\Rightarrow x=\dfrac{5}{13}\cdot3=\dfrac{15}{13}\\ \dfrac{y}{4}=\dfrac{5y}{20}=\dfrac{5}{13}\Rightarrow y=\dfrac{5}{13}\cdot4=\dfrac{20}{13}\)
Vậy \(x=\dfrac{15}{13};y=\dfrac{20}{13}\)
c,
\(7x=3y\\ \Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\\ \dfrac{x}{3}=-4\Rightarrow x=\left(-4\right)\cdot3=-12\\ \dfrac{y}{7}=-4\Rightarrow y=\left(-4\right)\cdot7=-28\)
Vậy \(x=-12;y=-28\)
d,
\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{z}{-2}\\ \Leftrightarrow\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}=\dfrac{x+y+\left(-2z\right)}{5+1+4}=\dfrac{x+y-2z}{10}=\dfrac{160}{10}=16\\ \dfrac{x}{5}=16\Rightarrow x=16\cdot5=80\\ \dfrac{y}{1}=16\Rightarrow y=16\\ \dfrac{z}{-2}=\dfrac{-2z}{4}=16\Rightarrow z=16\cdot\left(-2\right)=-32\)
Vậy \(x=80;y=16;z=-32\)
e,
\(\dfrac{x}{10}=\dfrac{y}{5}\Rightarrow\dfrac{x}{20}=\dfrac{y}{10};\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{y}{10}=\dfrac{z}{15}\\ \Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\\ \Leftrightarrow\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}=\dfrac{2x-3y+4z}{40-30+60}=\dfrac{330}{70}=\dfrac{33}{7}\)
\(\dfrac{x}{20}=\dfrac{2x}{40}=\dfrac{33}{7}\Rightarrow x=\dfrac{33}{7}\cdot20=\dfrac{660}{7}\\ \dfrac{y}{10}=\dfrac{3y}{30}=\dfrac{33}{7}\Rightarrow y=\dfrac{33}{7}\cdot10=\dfrac{330}{7}\\ \dfrac{z}{15}=\dfrac{4z}{60}=\dfrac{33}{7}\Rightarrow z=\dfrac{33}{7}\cdot15=\dfrac{495}{7}\)
Vậy \(x=\dfrac{660}{7};y=\dfrac{330}{7};z=\dfrac{495}{7}\)
f,
\(\dfrac{x}{-2}=\dfrac{-y}{4}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}=\dfrac{x+\left(-2y\right)+3z}{\left(-2\right)+8+15}=\dfrac{x-2y+3z}{21}=\dfrac{1200}{21}=\dfrac{400}{7}\)
\(\dfrac{x}{-2}=\dfrac{400}{7}\Rightarrow x=\dfrac{400}{7}\cdot\left(-2\right)=\dfrac{-800}{7}\\ \dfrac{-y}{4}=\dfrac{-2y}{8}=\dfrac{400}{7}\Rightarrow-y=\dfrac{400}{7}\cdot4=\dfrac{1600}{7}\Rightarrow y=\dfrac{-1600}{7}\\ \dfrac{z}{5}=\dfrac{3z}{15}=\dfrac{400}{7}\Rightarrow z=\dfrac{400}{7}\cdot5=\dfrac{2000}{7}\)
Vậy \(x=\dfrac{-800}{7};y=\dfrac{-1600}{7};z=\dfrac{2000}{7}\)
g,
\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}=\dfrac{2x+3y-z}{6+24-5}=\dfrac{50}{25}=2\)
\(\dfrac{x}{3}=\dfrac{2x}{6}=2\Rightarrow x=2\cdot3=6\\ \dfrac{y}{8}=\dfrac{3y}{24}=2\Rightarrow y=2\cdot8=16\\ \dfrac{z}{5}=2\Rightarrow z=2\cdot5=10\)
Vậy \(x=6;y=16;z=10\)
Làm gấp nên k có kiểm tra, bn bấm máy tính dò lại nhé
Ap dung tinh chat day ti so bang nhau, ta co:
\(\dfrac{2x-y}{5}=\dfrac{3y-2z}{15}=\dfrac{2x-y-3y+2z}{5-15}=\dfrac{2\left(x+z\right)-4y}{-10}=\dfrac{4y-4y}{-10}=0\)
Do do
\(2x-y=0\Rightarrow2x=y\Rightarrow x=\dfrac{y}{2}\)
\(3y-2z=0\Rightarrow3y=2z\Rightarrow\dfrac{y}{2}=\dfrac{z}{3}\)
Vay \(x=\dfrac{y}{2}=\dfrac{z}{3}\)
thanks nhìu