\(2^x+2^y+2^z=552\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

Do \(x;y;z>0\) và \(x^2+y^2+z^2=3\)

Nên \(0< x;y;z< \sqrt{3}\)

Ta có: \(\frac{1}{x+y+z}\le\frac{1}{9x}+\frac{1}{9y}+\frac{1}{9z}\)

\(\Rightarrow A\ge x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}-\frac{1}{9x}-\frac{1}{9y}-\frac{1}{9z}\)

\(\Leftrightarrow A\ge x+\frac{8}{9x}+y+\frac{8}{9y}+z+\frac{8}{9z}\)

Ta chứng minh: \(x+\frac{8}{9x}\ge\frac{x^2+33}{18}\)

\(\Leftrightarrow\left(x-1\right)^2\left(16-x\right)\ge\)

Do đó \(A\ge\frac{x^2+y^2+z^2+99}{18}=\frac{102}{18}=\frac{17}{3}\)

Dấu = xảy ra khi x=y=z=1

6 tháng 7 2018

Dòng thứ 3 từ dưới lên là \(\left(x-1\right)^2\left(16-x\right)\ge0\)

                              Đúng do \(0< x< \sqrt{3}< 16\)

29 tháng 1 2020

Áp dụng BĐT Cauchy - Schwarz dạng phân thức, ta có :

\(P=\)\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2x+2y+2z}=\frac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=\frac{2^2}{2.2}=1\)

Dấu " = ' xảy ra \(\Leftrightarrow\)\(x=y=z\)

Vậy : \(MinP=1\)\(\Leftrightarrow x=y=z\)

31 tháng 7 2016

ầy bạn xem lại khúc sao chữ và nhé

31 tháng 7 2016

mik biết là thiếu đề nhưng mik thấy thày mik ghi thế giờ mới biết

12 tháng 9 2017

a)2(x - y)(x + y) + (x + y)2+ (x - y)2

=2.x2-y2 +x2+2xy+y2+x2-2xy+y2

=(2x2+x2+x2)+(-y2+y2+y2)+(2xy-2xy)

=4x2+y2

b)(x - y + z)2+ (z - y)2+ 2(x - y + z)(y - z)

=x2-y2+z2+z2-2zy+y2+2x-2y2+2z2

=(-y2+y2-2y2 ) +(z2+z2+2z2) +x2-2zy+2x

=-2y2 +4z2+x2-2xy +2x