
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Tìm x và y biết :
a) \(\dfrac{x}{y}=-2\) và \(x+y=12\)
Ta có : \(\dfrac{x}{y}=-2\Rightarrow x=-2y\)
\(x+y=12\Rightarrow-2y+y=12\Rightarrow y=-12\)
\(\Rightarrow x=-2y=-2.\left(-12\right)=24\)
b) \(\dfrac{x}{y}=\dfrac{1}{4}\) và \(x-y=-15\)
Ta có : \(\dfrac{x}{1}=\dfrac{y}{4}=\dfrac{x-y}{1-4}=\dfrac{-15}{-3}=5\)
\(\dfrac{x}{1}=5\Rightarrow x=5\)
\(\dfrac{y}{4}=5\Rightarrow y=20\)
c) \(\dfrac{x}{3}=\dfrac{y}{5}\) và \(x-y=32\)
Ta có : \(\dfrac{x-y}{3-5}=\dfrac{32}{-2}=-16\)
\(\dfrac{x}{3}=-16\Rightarrow x=-48\)
\(\dfrac{y}{5}=-16\Rightarrow y=-80\)
d) \(\dfrac{x}{y}=\dfrac{7}{3}=>\dfrac{x}{7}=\dfrac{y}{3}\)
Ta có : \(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x+y}{7+3}=\dfrac{40}{10}=4\)
\(\dfrac{x}{7}=4=>x=28\)
\(\dfrac{y}{3}=4=>y=12\)
e) \(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x+y}{5+9}=\dfrac{56}{14}=4\)
\(\dfrac{x}{5}=4=>x=20\)
\(\dfrac{y}{9}=4=>y=36\)
f) \(\dfrac{x}{7}=\dfrac{y}{10}=\dfrac{x-y}{7-10}=\dfrac{36}{-3}=-12\)
\(\dfrac{x}{7}=-12=>x=-84\)
\(\dfrac{y}{10}=-12=>y=-120\)
ìm x và y biết:
a,xyxy= -2 và x+y =12
b,xyxy=1414 và x-y =-15
c,x3x3=y5y5 và x-y =32
d,xyxy=7373 và x+y =40
e,x5x5=y9y9 và x+y =56
f,x7x7=y10y10 và x-y =36
haha

a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{5}=\dfrac{y}{7}=\dfrac{y-2x}{7-5}=\dfrac{24}{2}=12\)
\(\Rightarrow2x=12\cdot5=60\Rightarrow x=60:2=30\)
\(y=12\cdot7=84\)
Vậy x = 30 ; y = 84
b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+3y}{3+2\cdot3}=\dfrac{18}{9}=2\)
\(\Rightarrow x=2\cdot3=6\)
\(y=2\cdot2=4\)
Vậy x = 6 ; y = 4
c. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)
\(\Rightarrow x=2\cdot2=4\)
\(y=3\cdot2=6\)
\(z=4\cdot2=8\)
Vậy x = 4 ; y = 6 ; z = 8
d. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-y-z}{2-3-4}=\dfrac{15}{-5}=-3\)
\(\Rightarrow x=-3\cdot2=-6\)
\(y=-3\cdot3=-9\)
\(z=-3\cdot4=-12\)
Vậy \(x=-4;y=-6;z=-8\)

1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)

\(\dfrac{1}{2}x=\dfrac{2}{3}y=\dfrac{3}{4}z\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)
\(\Rightarrow\left\{{}\begin{matrix}x=30.2=60\\y=30.\dfrac{3}{2}=45\\z=30.\dfrac{4}{3}=40\end{matrix}\right.\)

a,\(x-\dfrac{3}{5}=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}+\dfrac{3}{5}\)
\(x=\dfrac{6}{5}\)
b,\(\left|x\right|-\dfrac{4}{5}=\dfrac{2}{5}\)
\(\left|x\right|=\dfrac{2}{5}+\dfrac{4}{5}\)
\(\left|x\right|=\dfrac{6}{5}\)
\(\Rightarrow x=\pm\dfrac{6}{5}\)
c,\(\dfrac{x}{-5}=\dfrac{24}{15}\)
\(x=\dfrac{-5.24}{15}\)
\(x=\dfrac{-24}{5}\)
d,Áp dụng tc dãy TSBN, ta có:
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x-y}{4-5}=\dfrac{21}{-1}=-21\)
+\(\dfrac{x}{4}=-21\Rightarrow x=-21.4=-84\)
+\(\dfrac{y}{5}=-21\Rightarrow y=-21.5=-105\)
Vậy x=-84 ; y=-105
a/ \(x-\dfrac{3}{5}=\dfrac{3}{5}\)
\(\Leftrightarrow x=\dfrac{3}{5}+\dfrac{3}{5}\)
\(\Leftrightarrow x=\dfrac{6}{5}\)
Vậy...
b/ \(\left|x\right|-\dfrac{4}{5}=\dfrac{2}{5}\)
\(\Leftrightarrow\left|x\right|=\dfrac{2}{5}+\dfrac{4}{5}\)
\(\Leftrightarrow\left|x\right|=\dfrac{6}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=-\dfrac{6}{5}\end{matrix}\right.\)
Vậy...
c/ \(\dfrac{x}{-5}=\dfrac{24}{15}\)
\(\Leftrightarrow15x=-120\)
\(\Leftrightarrow x=-8\)
Vậy...
c/ Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x-y}{4-5}=\dfrac{21}{-1}=-21\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=-21\\\dfrac{y}{5}=-21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-84\\y=-105\end{matrix}\right.\)
Vậy..

a) \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)
\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{z}{3}=\dfrac{y}{7}\) (2)
Từ (1) và (2) suy ra: \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y-z}{9-7-3}=\dfrac{-15}{-1}=15\)
\(\Rightarrow\left\{{}\begin{matrix}x=15.9\\y=15.7\\z=15.3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=135\\y=105\\z=45\end{matrix}\right.\)
Vậy, x = 135, y = 105, z = 45
b, \(\dfrac{x}{-3}=\dfrac{y}{-8}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{64}=\dfrac{x^2-y^2}{9-64}=-\dfrac{44}{\dfrac{5}{-55}}=-\dfrac{44}{5}:\left(-55\right)=-\dfrac{44}{5}.-\dfrac{1}{55}=\dfrac{44}{275}=0,16\)
+) \(\dfrac{x^2}{9}=0,16\Rightarrow x^2=1,44\Rightarrow x=\pm1,2\)
+) \(\dfrac{y^2}{64}=0,16\Rightarrow y^2=10,24\Rightarrow y=\pm3,2\)
Vậy ...

a)Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{5}=\dfrac{y}{9}=\dfrac{z}{7}=\dfrac{y-z}{9-7}=\dfrac{10}{2}=5\)
=>x=5.5:2=12,5
y=5.9=45
z=5.7=35
b)Từ đẳng thức \(\dfrac{x}{y}=\dfrac{2}{5}=>\dfrac{x}{2}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x-y}{2-5}\dfrac{15}{-3}=-5\)
=>x=-5.2=-10
y=-5.5=-25
\(\dfrac{2x}{5}=\dfrac{y}{9}=\dfrac{z}{7}=\dfrac{y-z}{9-7}=\dfrac{10}{2}=5\)
=>\(\dfrac{2x}{5}=5\Rightarrow x=12,5;\dfrac{y}{9}=5\Rightarrow y=45;\dfrac{z}{7}=5\Rightarrow z=35\)
Vậy.....
\(\dfrac{x}{y}=\dfrac{2}{5}\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x-y}{2-5}=\dfrac{15}{-3}=-5\)
=>\(\dfrac{x}{2}=-5\Rightarrow x=-10;\dfrac{y}{5}=-5\Rightarrow y=-25\)
Vậy.....

Câu 2:
Để C là số nguyên thì \(\sqrt{x}-1+5⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{1;-1;5\right\}\)
hay \(x\in\left\{4;0;36\right\}\)

bài 1)
a) \(\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{15}\right)
\)
\(\left(\dfrac{5}{42}-x\right)=\dfrac{11}{13}+\dfrac{15}{28}-\dfrac{11}{15}\)
\(x=\dfrac{5}{42}-\dfrac{3541}{5460}=-\dfrac{413}{780}\)
b) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|2,15\right|\)
\(\left|x+\dfrac{4}{15}\right|=-\left|2,15\right|+\left|3,75\right|=1,6\)
\(\Rightarrow x+\dfrac{4}{15}=1,6\) hoặc \(x+\dfrac{4}{15}=-1,6\)
\(\Rightarrow x=\dfrac{4}{3}\) hoặc \(x=-\dfrac{28}{15}\)
c) \(\dfrac{5}{3}-\left|x-\dfrac{3}{2}\right|=-\dfrac{1}{2}\)
\(\Rightarrow\left|x-\dfrac{3}{2}\right|=\dfrac{5}{3}+\dfrac{1}{2}=\dfrac{13}{6}\)
\(\Rightarrow x-\dfrac{3}{2}=\dfrac{13}{6}\) hoặc \(x-\dfrac{3}{2}=-\dfrac{13}{6}\)
\(\Rightarrow x=\dfrac{11}{3}\) hoặc \(x=-\dfrac{2}{3}\)
d)\(\left(x-\dfrac{2}{3}\right).\left(2x-\dfrac{3}{2}\right)=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\) hoặc \(2x-\dfrac{3}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{3}{4}\end{matrix}\right.\)
3) a) \(\left(x^{^2}-4\right)^{^2}+\left(x+2\right)^{^2}=0\)
Vì \(\left(x^{^2}-4\right)^{^2}\ge0,\left(x+2\right)^{^2}\ge0\) nên :
\(\left\{{}\begin{matrix}x^{^2}-4=0\\x+2=0\end{matrix}\right.\Rightarrow x=\pm2\)
b) \(\left(x-y\right)^{^2}+\left|y+2\right|=0\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^{^2}\ge0\\\left|y+2\right|\ge0\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}x-y=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-y=0\\y=-2\end{matrix}\right.\Rightarrow x=-2;y=-2\)
c) \(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
Vì \(\left\{{}\begin{matrix}\left|x-y\right|\ge0\\\left|y+\dfrac{9}{25}\right|\ge0\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow y=-\dfrac{9}{25};x=-\dfrac{9}{25}\)
d) \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\left(-\dfrac{1}{4}\right)-\left|y\right|\)
\(\Rightarrow\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|+\left|y\right|=-\dfrac{1}{4}\)
Vì \(\left\{{}\begin{matrix}\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|\ge0\\\left|y\right|\ge0\end{matrix}\right.\) mà \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|+\left|y\right|=-\dfrac{1}{4}\) nên không tồn tại x,y thỏa mãn đề bài .
\(\dfrac{78}{15}:x=\dfrac{78}{15\cdot x}\)
\(\Leftrightarrow\dfrac{78}{15x}=\dfrac{78}{15x}\)
=>\(x< >0\)
=>\(y=\dfrac{78}{15x}\)