Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=2/(xy+yz+zx)+2/(x^2+y^2+z^2)+1/xy+yz+zx
>=2(4/(x+y+z)^2)+1/(1/3)>=8+3=11(hình như sai đề nhưng cách làm là đúng rồi)
=2/(xy+yz+zx)+2/(x^2+y^2+z^2)+1/xy+yz+zx
>=2(4/(x+y+z)^2)+1/(1/3)>=8+3=11(hình như sai đề nhưng cách làm là đúng rồi)
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
Mẹo: Làm xuất hiện (xy-1)/xy
\(x^2+y^2=2x^2y^2\Leftrightarrow x^2+y^2-2xy=2xy\left(xy-1\right)\)
\(\Leftrightarrow\frac{xy-1}{xy}=\frac{x^2+y^2-2xy}{2x^2y^2}=\frac{1}{2}\left(\frac{1}{y^2}+\frac{1}{x^2}-\frac{2}{xy}\right)=\frac{1}{2}\left(\frac{1}{x}-\frac{1}{y}\right)^2\)
hm Đề sai ah
$x,y$ chỉ nguyên không thôi hả bạn? Mình tưởng nguyên dương chứ @@