\(2x^2+3xy-2y^2=7\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

\(2x^2+3xy-2y^2=7\Leftrightarrow2x^2+3xy+\left(-2y^2-7\right)=0\)

\(\Delta=9y^2-8\left(-2y^2-7\right)=25y^2+56>0\)=> luôn có hai nghiệm phân biệt

Để pt có nghiệm nguyên thì \(25y^2+56=k^2\Leftrightarrow\left(k-5y\right)\left(k+5y\right)=56\)

Xét các trường hợp được \(\left(k;y\right)=\left(\pm9;\pm1\right)\)

Với y = 1 được x = -3 (nhận) hoặc x = 3/2 (loại)

Với y = -1 được x = 3 (nhận) hoặc x = -3/2 (loại)

Vậy (x;y) = (-3;1) ; (3;-1)

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

20 tháng 6 2020

Ta có: \(x+\frac{1}{y};y+\frac{1}{x}\) thuộc Z 

=> \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+x.\frac{1}{x}+\frac{1}{y}.y+\frac{1}{xy}=xy+\frac{1}{xy}=xy+\frac{1}{xy}\) thuộc Z 

=> \(\left(xy+\frac{1}{xy}\right)^2=x^2y^2+2xy\frac{1}{xy}+\frac{1}{x^2y^2}=x^2y^2+\frac{1}{x^2y^2}+2\) thuộc Z 

=> \(x^2y^2+\frac{1}{x^2y^2}\) thuộc Z

27 tháng 9 2021

à....cái đó thì mình chưa tính ra được