Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(36-y^2=\left(6-y\right)\left(6+y\right)=8\left(x-2010\right)^2\)
Do \(y\in N\Rightarrow y\in\left[0,6\right]\)
mà vế trái là số chẵn nên y là số chẵn
nên \(y\in\left\{0;2;4;6\right\}\) thay lại ta có cặp giá trị thỏa mãn là
\(\hept{\begin{cases}x=2008\text{ hoặc }x=2012\\y=2\end{cases}}\text{ hoặc }\hept{\begin{cases}x=2010\\y=6\end{cases}}\)
Ta có: \(M\left(x\right)+N\left(x\right)=4x^2-3x\Rightarrow N\left(x\right)=\left(4x^2-3x\right)-M\left(x\right)\)
\(N\left(x\right)=\left(4x^2-3x\right)-\left(9x^3-5x^2+7x+5\right)\)
\(N\left(x\right)=4x^2-3x-9x^3+5x^2-7x-5\)
\(N\left(x\right)=-9x^3+\left(4x^2+5x^2\right)-\left(3x+7x\right)-5\)
\(N\left(x\right)=-9x^3+9x^2-10x-5\)
Vậy đa thức N(x) là \(N\left(x\right)=-9x^3+9x^2-10x-5\)