Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{27^x}{3^{2x-y}}=243=3^5\Rightarrow27^x=3^5.3^{2x-y}=3^{5+2x-y}\Rightarrow3^{3x}=3^{5+2x-y}\Rightarrow3x=5+2x-y\Rightarrow3x-2x=5-y\Rightarrow x=5-y\)(1)\(\frac{25^x}{5^{x+y}}=125=5^3\Rightarrow25^x=5^3.5^{x+y}\Rightarrow5^{2x}=5^{3+x+y}\Rightarrow2x=3+x+y\Rightarrow2x-x=3+y\Rightarrow x=3+y\)(2)
Từ (1) và (2)⇒
\(x=5-y=3+y\Rightarrow y=1\Rightarrow x=4\)
Vậy y=1; x=4 thỏa mãn đề bài
Bài 2:
\(\Leftrightarrow\left\{{}\begin{matrix}3^{3x-2x+y}=3^5\\5^{2x-x-y}=5^3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\x-y=3\end{matrix}\right.\)
=>x=1;y=-2
a) Theo t/c dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{27}{7}\)
+) \(\frac{x}{2}=\frac{27}{7}\)=> x= (27x2) : 7 =\(\frac{54}{7}\)
+) \(\frac{y}{5}=\frac{27}{7}\)=> y= (27x5) : 7 = \(\frac{135}{7}\)
Vậy x=\(\frac{54}{7}\); y=\(\frac{135}{7}\)
b) Tương tự câu a
\(\frac{x}{3}=\frac{y}{6}=\frac{x+y}{3+6}=\frac{27}{9}=3\)
+) \(\frac{x}{3}=3\)=> x= 3x3 = 9
+) \(\frac{y}{6}=3\)=> y= 3x6 = 18
Vậy x= 9 ; y= 18
a, Đặt : \(\frac{x}{2}=\frac{y}{5}=k\)\(< =>\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
Ta có : \(x+y=27< =>2k+5k=27< =>7k=27\)
\(< =>k=\frac{27}{7}\)
Suy ra \(x=2k=\frac{54}{7};y=5k=\frac{135}{7}\)
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
Có: \(\frac{\frac{-1}{2}}{2x-1}=\frac{\frac{0,2}{-3}}{5}\)\(\Rightarrow\left(2x-1\right).\frac{0,2}{-3}=\frac{-1}{2}.5\Leftrightarrow\left(2x-1\right).\frac{0,2}{-3}=\frac{-5}{2}\)\(\Leftrightarrow2x-1=\frac{-75}{2}\Leftrightarrow2x=\frac{-73}{2}\Leftrightarrow x=\frac{-73}{4}\)
Vậy x=-73/4
minh bik lam bai b thui a
25^x=5^2.x:5^1.x+y=5^3
suy ra 2.x : 1.x+y=3