Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk để hpt luôn có nghiệm duy nhất (x;y) \(\frac{4}{1}\ne\frac{3}{2}\) (luôn đúng)
\(HPT\Leftrightarrow\hept{\begin{cases}4x-3y=m-10\\4x+8y=12m+12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11y=11m+22\\x+2y=3m+3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=3m+3-2y\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{33m+33-22m-44}{11}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{11m-11}{11}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=m-1\\y=m+2\end{cases}}\)
Vậy vơi mọi m thì hpt có nghiệm duy nhất (x;y)=(m-1;m+2)
Ta có:\(x^2+y^2=\left(m-1\right)^2+\left(m+2\right)^2\)
\(=m^2-2m+1+m^2+4m+4\)
\(=2m^2+2m+5=2\left(m^2+m+\frac{5}{2}\right)\)
\(=2\left(m^2+m+\frac{1}{4}+\frac{9}{4}\right)=2\left(m+\frac{1}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Để x2+y2 nhỏ nhất <=> \(2\left(m+\frac{1}{2}\right)^2\) nhỏ nhất <=> m+1/2=0 <=> m=-1/2
\(4x^2-2+\frac{1}{4x^2}+\left(2x\right)^2+y^2=4\)
\(\left(\left(2x\right)^2-\frac{1}{\left(2x\right)^2}\right)^2+\left(\left(2x\right)-y\right)^2=4-2\left(2x\right)y\)
\(VT\ge0\) đẳng thức khi: 2x=+-1; 2x=y;
\(\Rightarrow4-4xy\ge0\Rightarrow xy\le1\)
DS: x=+-1/2; y+-1
mk mới hok lớp 7 ak ko làm được hhi!!!!!!!!!!!!!!!
678679780
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
Lời giải:
$x^2-x^2y-y+8x+7=0$
$\Leftrightarrow x^2+8x+7=y(x^2+1)$
$\Leftrightarrow y=\frac{x^2+8x+7}{x^2+1}$
$\Leftrightarrow y=\frac{(x^2+1)+8x+6}{x^2+1}=1+\frac{8x+6}{x^2+1}$
Áp dụng bđt AM-GM ta có:
$x^2+\frac{1}{4}\geq |x|\geq x$
$\Rightarrow x^2+1\geq x+\frac{3}{4}=\frac{4x+3}{4}$
$\Rightarrow \frac{8x+6}{x^2+1}\leq \frac{2(4x+3)}{\frac{4x+3}{4}}=8$
$\Rightarrow y\leq 1+8=9$
Vậy $y_{\max}=9$
$x^2=\frac{1}{4}$; $x\geq 0\Rightarrow x=\frac{1}{2}$
pt\(\Leftrightarrow x^2\left(1-y\right)+8x+7-y=0\) (1)
Ta có :\(\Delta\)(x)=\(-y^2+8y+9\)(do làm biếng nên làm ra denta luôn)
Để tồn tại MAX y thì PT (1) có ngiệm nên \(\Delta\ge0\) \(\Leftrightarrow-y^2+8y+9\ge0\)
\(\Leftrightarrow-y^2-y+9y+9\ge0\Leftrightarrow-y\left(y+1\right)+9\left(y+1\right)\ge0\)
\(\Leftrightarrow\left(y+1\right)\left(9-y\right)\ge0\)
Giải BPT ta được : \(-1\le y\le9\)
\(\Rightarrow\) Max y =9. Thay y=9 vào (1)\(\Rightarrow x=\dfrac{1}{2}\)
Vậy Max y=9\(\Leftrightarrow x=\dfrac{1}{2}\)