K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2024

x+ 2y+3xy - x - y + 3 = 0

(x2 - y2) + (3y2 + 3xy) - (x + y) = -3

(x - y)(x + y) + 3y(x + y) - (x + y) = -3

(x + y)(x + 2y -1) = -3 = 1.(-3) = (-1).3

(x;y)=(4;-3) (-6;5)

30 tháng 8 2015

x^2 + 3xy + 2y^2 =  0 

=> x^2 + xy + 2xy + 2y^2 = 0 

=> x(x+y) + 2y ( x+  y ) = 0 =

=> ( x+  2y)( x + y ) = 0 

=> x = -2y hoặc x = -y 

(+) x = -2y thay vào ta có :

 8y^2 + 6y + 5 = 0 giải ra y => x 

(+) thay x = -y ta có :

2y^2 - 3y + 5 = 0 tương tự 

30 tháng 8 2015

Nguyễn Đình Dũng tục tỉu thế

1 tháng 7 2015

Ta có: 2y2 + x + y + 1 = x 2 + 2y2 + xy
2y2(x - 1) – x(x - 1) – y(x - 1) + 1 = 0 (1)
-Vì x = 1 không phải là nghiệm của (1). Khi đó chia hai vế của (1) cho x – 1, ta có: (2) 
-Với x, y nguyên. Suy ra: nguyên nên x – 1 = 1 hoặc x – 1 = -1 
-Thay x = 2 và x = 0 vào (2), ta có: y = 1 hoặc y = và y Z.
Vậy phương trình đã cho có hai nghiệm nguyên là (2;1) và (0;1).

20 tháng 12 2015

2x\(^2\)+y\(^2\)+3xy+3x+2y+2=0

\(\Leftrightarrow\)16x\(^2\)+8y\(^2\)+24xy+24x+16y+16=0

\(\Leftrightarrow\)(4x)\(^2\)+24x(y+1)+8y\(^2\)+16y+16=0

\(\Leftrightarrow\)(4x)\(^2\)+24x(y+1)+[3(y+1)]\(^2\)-[3(y+1)]\(^2\)+8y\(^2\)+16y+16=0

\(\Leftrightarrow\)(4x+3y+3)\(^2\)-9y\(^2\)-18y-9+8y\(^2\)16y+16=0

\(\Leftrightarrow\)(4x+3y+3)\(^2\)-y\(^2\)-2y-1+8=0

\(\Leftrightarrow\)(4x+3y+3)\(^2\)- (y+1)\(^2\)= -8

\(\Leftrightarrow\)(y+1+4x+3y+3) (y+1-4x-3y-3)=8

\(\Leftrightarrow\)4(x+y+4) (-4-2y-2)=8

\(\Leftrightarrow\)(x+y+4) (2x+y+11)= -1

\(\Leftrightarrow\){x+y+4= -1

      {2x+y+1=1

\(\Rightarrow\)x=2 và y= -4

{x+y+4= 1

{2x+y+1= -1

\(\Rightarrow\)x=-2 và y=2

vậy nghiệm (x,y)=(-2;4) (-2;2)

 

 

25 tháng 10 2020

tải Qanda về mà hỏi