K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

sd đk có nghiệm của phương trình
a,  x^2+x(y-2)+y^2-y=0 (1)
để tồn tại x thì pt (1) phải có nghiệm
\ (y-2)^2-4(y^2-y)\geq0
-3y^2+4\geq0
vô lí. Vậy phương trình ko có nghiệm nguyên 

11 tháng 11 2016

Thánh nữa.

Câu nào không có nghiệm nguyên. Cả câu a và câu b ít nhất đều có nghiệm nguyên là (x, y) = (0, 0) nhé

13 tháng 1 2019

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

13 tháng 1 2019

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

11 tháng 7 2019

M=x3+x2y−2x2−xy−y2+3y+x−1

=(x3+x2y−2x2)−(xy+y2−2y)+y+x−1

=x2(x+y−2)−y(x+y−2)+(y+x−2)+1

=x2.0−y.0+0+1

=1

N=x3−2x2−xy2+2xy+2y−2x−2

=(x3−2x2+x2y)−(x2y+xy2−2xy)+2y+2x−4−4x+2

=x2(x−2+y)−xy(x+y−2)+2(y+x−2)−4x+2

=x2.0−xy.0+2.0−4x+2

=2−4x

23 tháng 7 2015

=> x2 + 2xy + y= x2y2 + xy 

=> (x + y)2 = xy.(xy + 1)

=> xy. (xy + 1) là số chính phương mà xy; xy + 1 là 2 số nguyên liên tiếp 

Để (x + y)2 = xy.(xy + 1) <=> xy = 0 <=> x = 0 hoặc y = 0 

x+ y = 0 => x = - y

=> x = y = 0

Vậy x = y = 0