\(3x^3+xy=3\)

 Phiền mọi người ai biết thì giúp nha. Mai mình...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

\(3x^3+xy=3\)

\(\Leftrightarrow x\left(3x^2+y\right)=3\)

Với x = 1

\(\Rightarrow3x^2+y=3\Leftrightarrow y=0\)

Với x = 3

\(\Rightarrow3.3^2+y=3\)

\(\Leftrightarrow y=3-27=-24\)

Với x = -1

=> 3.(-1)^2+y=3

=>y=0

Với x = -3

=> y = -24

10 tháng 4 2019

Bài 1 dễ thì tự làm

Bài 2

\(y^2+2xy-3x-2=0\Leftrightarrow y^2+2xy+x^2=x^2+3x+2\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)

Vế trái là số chính phương vế phải là tích 2 số nguyên liên tiếp nên 1 trong 2 số x+1 và x+2 phải có 1 số bàng 0

\(\Rightarrow y=-x\)

\(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\y=2\end{cases}}}}\)

Vậy \(\left(x;y\right)=\left(-1;1\right);\left(-2;2\right)\)

16 tháng 12 2018

mai mình nộp bài r ai đó giúp mình với huhu

16 tháng 12 2018

a) ĐKXĐ: \(4x^2-4x+1\ne0\)

Ta sẽ giải phương trình \(4x^2-4x+1=0\) để loại các nghiệm:

\(4x^2-4x+1=4\left(x^2-x-\frac{1}{4}\right)=4\left(x-\frac{1}{2}\right)^2\)

Để \(4x^2-4x+1=0\) thì \(4\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

Vậy ĐKXĐ: \(x\ne\frac{1}{2}\)

b) \(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{8\left(x-\frac{1}{2}\right)^3}{4\left(x-\frac{1}{2}\right)^2}=2x-1\)  (chịu khó ngồi phân tích cả tử và mẫu thành nhân tử giúp mình)

c) Ta có: \(P=2x-1\).Với mọi x nguyên thì \(2x\) nguyên.

Do vậy \(P=2x-1\)nguyên.

Suy ra đpcm.

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

16 tháng 4 2019

a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM) 

*NOTE: chứng minh đc vì (x-y)^2  >= 0 ;  x^2  +xy +y^2 > 0

16 tháng 4 2019

mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé