Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2012^{\left|x-2\right|+y^2-1}.3^{2012}=9^{1006}\)
=> \(2012^{\left|x-2\right|+y^2-1}=9^{1006}:3^{2012}\)
=> \(2012^{\left|x-2\right|+y^2-1}=1\)
=> \(2012^{\left|x-2\right|+y^2-1}=2012^0\)
=> \(\left|x-2\right|+y^2-1=0\)
=> \(\left|x-2\right|+y^2=1\)
Ta có: \(\left|x-2\right|\ge0\forall x\); \(y^2\ge0\forall y\)
=> \(\left|x-2\right|+y^2\ge0\forall x;y\)
Do x;y \(\in\)Z => \(\left|x-2\right|+y^2\in Z\)
TH1: \(\hept{\begin{cases}\left|x-2\right|=0\\y^2=1\end{cases}}\) <=> \(\hept{\begin{cases}x-2=0\\y^2=1^2\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=\pm1\end{cases}}\)
TH2: \(\hept{\begin{cases}\left|x-2\right|=1\\y^2=0\end{cases}}\) <=> x - 2 = 1 hoặc x - 2 = -1 và y = 0 <=> x = 3 hoặc x = 1 và y = 0
Vậy ...
Điều kiện xác định: \(\sqrt{x}\ge0\Rightarrow x\ge0\)và \(1006\sqrt{x}+1\ne0\Rightarrow1006\sqrt{x}\ne-1\)(Luôn đúng)
Vậy a có nghĩa khi \(x\ge0\) \(a=\)\(\frac{2012\sqrt{x}+3}{1006\sqrt{x}+1}\)\(=\frac{2012\sqrt{x}+2+1}{1006\sqrt{x}+1}\)\(=\frac{\left(2012\sqrt{x}+2\right)+1}{1006\sqrt{x}+1}\)\(=\frac{2\left(1006\sqrt{x}+1\right)+1}{1006\sqrt{x}+1}\)\(=\frac{2\left(1006\sqrt{x}+1\right)}{1006\sqrt{x}+1}\)\(+\frac{1}{1006\sqrt{x}+1}\)\(=2+\frac{1}{1006\sqrt{x}+1}\)
Vì 2 \(\varepsilon\)Z. Nên để a \(\varepsilon\)Z thì \(\frac{1}{1006\sqrt{x}+1}\) \(\varepsilon\)Z . Để \(\frac{1}{1006\sqrt{x}+1}\)\(\varepsilon\)Z thì 1\(⋮\)\(1006\sqrt{x}+1\)
\(1006\sqrt{x}+1\)\(\varepsilon\)Ư(1) mà Ư(1) =1
\(\Rightarrow\)\(1006\sqrt{x}+1=1\)\(\Leftrightarrow\)\(1006\sqrt{x}=0\)\(\sqrt[]{x}=0\Rightarrow x=0\)(Thỏa mãn điều kiện)
Vậy để a là số nguyên thì x=0
\(VP=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{2}{2012}+\dfrac{1}{2013}\)
\(VP=2013+\dfrac{2012}{2}+...+\dfrac{2}{2012}+\dfrac{1}{2013}\)
\(VP=1+\left(\dfrac{2012}{2}+1\right)+....+\left(\dfrac{2}{2012}+1\right)+\left(\dfrac{1}{2013}+1\right)\)
\(VP=\dfrac{2014}{2014}+\dfrac{2014}{2}+...+\dfrac{2014}{2012}+\dfrac{2014}{2013}\)
\(VP=2014\left(\dfrac{1}{2}+..+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}\right)\)
\(VP-VT=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)-x\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)=0\)
\(\Rightarrow\left(2014-x\right)\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}\right)=0\)
\(\Rightarrow x=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\ne0\right)\)
Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath
Em chỉ cần đổi số 2015 ----> 2012
( x - 2 )2012 + | y2 - 9 |2014 = 0 ( 1 )
vì ( x - 2 )2012 \(\ge\)0 ; | y2 - 9 |2014 \(\ge\)0 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy x = 2 ; y = 3
còn lại tương tự
Vì (x -2 )2012> hoặc =0 mà |y2 -9 |2014 > hoặc =0 nên để (x -2 )2012 + | y2 -9 |2014 =0 thì (x-2)2012 =0 và |y2 -9| =0
=>( x-2)=0 và y2-9=0
=>x=0 và y2=9
=>x=o và y=3 hoặc x= -3
\(\Leftrightarrow2012^{\left|x-1\right|+y^2-1}.3^{2012}=3^{2012}\)
\(\Leftrightarrow2012^{\left|x-1\right|+y^2-1}=1\)
\(\Leftrightarrow\left|x-1\right|+y^2-1=0\)
Pt đã cho có vô số cặp nghiệm x;y thỏa mãn
Chắc bạn ghi nhầm đề
đúng đề mà bn