K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 11 2023

Lời giải:
Đặt $3x+5y=a; x+4y=b$.

Ta có: $2a+b=2(3x+5y)+x+4y=7x+14y=7(x+2y)\vdots 7$

$ab\vdots 7\Rightarrow a\vdots 7$ hoặc $b\vdots 7$

Nếu $a\vdots 7$. Khi đó: $2a+b\vdots 7\Rightarrow b\vdots 7$

$\Rightarrow ab\vdots (7.7)$ hay $ab\vdots 49$

Nếu $b\vdots 7$. Khi đó: $2a+b\vdots 7\Rightarrow 2a\vdots 7\Rightarrow a\vdots 7$

$\Rightarrow ab\vdots (7.7)$ hay $ab\vdots 49$
Vậy ta có đpcm.

 

Bạn tham khảo cái này: https://hoidap247.com/cau-hoi/330556

Chia hết 48 hay 49 thế bạn?

Nếu là chia hết 49 thì bạn tham khảo cái này: https://hoidap247.com/cau-hoi/330556

24 tháng 6 2018

a) ta có: \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}=\frac{3x^2}{27}=\frac{5y^2}{20}\)

ADTCDTSBN

có: \(\frac{3x^2}{27}=\frac{5y^2}{20}=\frac{3x^2-5y^2}{27-20}=\frac{-20}{7}\)

\(\Rightarrow\frac{x^2}{9}=\frac{-20}{7}\Rightarrow x^2=\frac{-180}{7}\Rightarrow x\in\varnothing\) ( bình phương của 1 số có giá trị nguyên dương)

y2/4 = -20/7 => y2 = -80/7 =>  không tìm được y

KL: không tìm được x;y

b) ta có: \(\frac{x}{4}=\frac{y}{7}\Rightarrow\frac{x^2}{16}=\frac{y^2}{49}=\frac{3x^2}{48}=\frac{4y^2}{196}\)

ADTCDTSBN

có: \(\frac{3x^2}{48}=\frac{4y^2}{196}=\frac{3x^2-4y^2}{48-196}=\frac{100}{-148}=\frac{-25}{37}\)

=>...

mk ko tìm đc x,y

DD
11 tháng 3 2022

1) \(\left(3x+5y\right)\left(x+4y\right)⋮7\)

\(\Leftrightarrow\orbr{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)

Ta có: \(\left(3x+5y\right)⋮7\Leftrightarrow5\left(3x+5y\right)=15x+25y=\left(x+4y\right)+2.7x+3.7y⋮7\)

\(\Leftrightarrow\left(x+4y\right)⋮7\)

Do đó \(\hept{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)

Suy ra \(\left(3x+5y\right)\left(x+4y\right)⋮\left(7.7\right)\Leftrightarrow\left(3x+5y\right)\left(x+4y\right)⋮49\)(ta có đpcm) 

DD
11 tháng 3 2022

2) \(n^3-n=n\left(n^2-1\right)=n\left(n^2-n+n-1\right)=n\left[n\left(n-1\right)+\left(n-1\right)\right]\)

\(=n\left(n-1\right)\left(n+1\right)\)

Có \(n\left(n-1\right)\left(n+1\right)\)là tích của ba số nguyên liên tiếp mà trong ba số \(n-1,n,n+1\)có ít nhất một số chia hết cho \(2\), một số chia hết cho \(3\). Kết hợp với \(\left(2,3\right)=1\)

Suy ra \(n\left(n-1\right)\left(n+1\right)\)chia hết cho \(2.3=6\).