Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2018^n-1964^n⋮3\)
\(2032^n-1984^n⋮3\)
nên An chia hết cho 3
Mà \(2018^n-1984^n⋮17\)
\(2032^n-1964^n⋮17\)
nên An chia hết cho 17
Vậy A chia hết cho 51
b) Ta có: An đồng dư 3^n +2^n-2.4^n (mod5)
và An đồng dư 2^n + 7^n -2^n-4^n (mod9)
Vậy An chia hết cho 45 khi n có dạng 12k
Thử cách này của em xem ạ... lâu rồi không làm dạng này nên không rành lắm :(
Với x = 0 thì y = 1 (TM)
Với x = 1 thì y = 1 (TM)
Ta sẽ chứng minh với x > 2 thì không tồn tại y. (*) Thật vậy:
Với x = 2 thì y = 3 \(\Rightarrow\) (*) đúng với x =2
Giả sử (*) đúng với x = k > 2; \(k\inℕ\). Tức là \(1!+2!+3!+...+k!\ne y^3\)
Cần chứng minh nó đúng với x = k + 1.Tức là chứng minh \(1!+2!+3!+...+k!+\left(k+1\right)!\ne y^3\) (1)
\(\Leftrightarrow\left(1!+2!+3!+...+k!\right)-y^3+\left(k+1\right)!\ne0\)
Theo giả thiết quy nạp suy ra \(\left(1!+2!+3!+...+k!\right)-y^3+\left(k+1\right)!\ne y^3-y^3+\left(k+1\right)!=\left(k+1\right)!>0\forall k\inℕ\)
Do vậy (1) đúng nên theo nguyên lí quy nạp suy ra (*) đúng.
Vậy (x;y) = { (0;1) ; (1;1) }
Với \(x=0\Rightarrow y=1\left(TM\right)\)
Với \(x=1\Rightarrow y=1\left(TM\right)\)
Với \(x=2\Rightarrow y^3=1+1\cdot2=3\Rightarrow y=\sqrt[3]{3}\left(KTM\right)\)
Với \(x=3\Rightarrow y^3=1+1\cdot2+1\cdot2\cdot3=9\Rightarrow y=\sqrt[3]{9}\left(KTM\right)\)
Với \(x=4\Rightarrow y^3=1+1\cdot2+1\cdot2\cdot3+1\cdot2\cdot3\cdot4=33\Rightarrow y=\sqrt[3]{33}\left(KTM\right)\)
Với \(x=5\Rightarrow y^3=1+1\cdot2+1\cdot2\cdot3+1\cdot2\cdot3\cdot4+1\cdot2\cdot3\cdot4\cdot5=33+120\) có tận cùng là 3.
Cứ tiếp tục như vậy thì \(y^3\) luôn có dạng \(33+\overline{...0}\).
Mà lập phương của 1 số tự nhiên thì không tận cùng là 3 nên \(\left(x;y\right)=\left\{0;1\right\};\left\{1;1\right\}\)
Ta có \(8n-3=11n-3n-3=11n-3\left(n+1\right)\)
Để \(8n-3⋮11\) thì \(3\left(n+1\right)⋮11\)
MÀ 3 không chia hết 11 \(\Rightarrow n+1⋮11\)
\(\Rightarrow n=10;21;32;...\)
2^x = y^2-1
2^x =(y-1)(y+1)
=> y+1 = 2^x/(y-1)
Do y+1 nguyên => y-1 là ước của 2^x, chỉ có thể có dạng 2^n với n>=1 hoặc y-1 =1 (loại)
=> y-1 có dạng 2^n => y-1 = 2^n
=> y+1 = 2^n +2
=> 2^x = 2^n(2^n+2)= 2^(n+1).[2^(n-1) +1] (*)
Nếu n> 1 thì 2^(n-1) +1 là số lẻ trong khi 2^x chẵn => (*) Vô nghiệm
Với n=1 => y =3 => x= 3
Đơn giản biểu thức
2
Giải phương trình
3
Giải phương trình