\(\le\)0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2015

Vì /x/ lớn hơn hoặc bằng 0

 /y/ lớn hơn hoặc bằng 0

=>/x/+/y/ lớn hơn hoặc bằng 0

mà /x/+./y/ theo đầu bài nhỏ hơn bằng 0

=>/x/+/y/=0

=>x=0;y=0

a) Ta có : \(\left|x-2\right|\ge0\forall x\)

                 \(\left|x+y-10\right|\ge0\forall x\)

Nên : \(\left|x-2\right|+\left|x+y-10\right|\ge0\forall x\)

Mà đề bài cho \(\left|x-2\right|+\left|x+y-10\right|\le0\)

Nên : \(\hept{\begin{cases}x-2=0\\x+y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\2+y-10=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=8\end{cases}}}\)

Vậy x = 2 ; y = 8 

Ta có : \(\left|x-2\right|\ge0\forall x\)

               \(\left|x.y-6\right|\ge0\forall x,y\)

Mà : \(\left|x-2\right|+\left|x.y-6\right|=0\)

Nên : pt \(\Leftrightarrow\hept{\begin{cases}x-2=0\\x.y-6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x.y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}}\)

18 tháng 1 2019

Dễ thấy \(VT\ge0\)

Mà đề lại cho \(VT\le0\)

Nên dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}xy=10\\yz=-15\\xz=-6\end{cases}}\)

Nhân từng vế của 3 đẳng thức trên lại được \(x^2y^2z^2=900\)

                                                                \(\Leftrightarrow xyz=\pm30\)

*Với \(xyz=30\Rightarrow\hept{\begin{cases}x=\frac{xyz}{yz}=\frac{30}{-15}=-2\\y=\frac{xyz}{xz}=\frac{30}{-6}=-5\\z=\frac{xyz}{xy}=\frac{30}{10}=3\end{cases}}\)

*Với \(xyz=-30\Rightarrow\hept{\begin{cases}x=\frac{xyz}{yz}=\frac{-30}{-15}=2\\y=\frac{xyz}{xz}=\frac{-30}{-6}=5\\z=\frac{xyz}{xz}=\frac{-30}{10}=-3\end{cases}}\)

Vậy ,,,,,,,,,,,

18 tháng 1 2019

Ta có \(\hept{\begin{cases}\left|xy-10\right|\ge0\forall x,y\\\left|yz+15\right|\ge0\forall y,z\\\left|zx+6\right|\ge0\forall z,x\end{cases}}\)=>|xy-10|+|yz+15|+|zx+6|\(\ge0\forall x,y,z\)

                                                                   mà |xy-10|+|yz+15|+|zx+6|\(\le0\)  

=>|xy-10|+|yz+15|+|zx+6| =0

<=>\(\hept{\begin{cases}\left|xy-10\right|=0\\\left|yz+15\right|=0\\\left|zx+6\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}xy-10=0\\yz+15=0\\zx+6=0\end{cases}}\)<=>\(\hept{\begin{cases}xy=10\\yz=-15\\zx=-6\end{cases}}\)

Ta có:\(\frac{xy}{yz}\)=\(\frac{10}{-15}\) 

=>\(\frac{x}{z}\)=\(\frac{-2}{3}\)

=>x=\(\frac{-2}{3}z\)

Thay x vào biểu thức zx=-6 ta được :

\(\frac{-2}{3}.z^2\)=-6

z2 = 9 => z= \(\orbr{\begin{cases}3\\-3\end{cases}}\)

Với z = 3 \(\Rightarrow\)\(\hept{\begin{cases}x=-6:3=-2\\y=-15:3=-5\end{cases}}\)

Với z= -3 \(\Rightarrow\)\(\hept{\begin{cases}x=-6:\left(-3\right)=2\\y=-15:\left(-3\right)=5\end{cases}}\)

Vậy (x,y,z)={ (-2,-5,3);(2,5,3) }

                                                          

12 tháng 8 2016

ta có : 1/y = x/4 - 1/2 = ( x+2)/4 <=> y = 4/(x - 2)

Để x, y nguyên nên ta có : x-2 ϵ Ư(4) = { -1 , 1 ,-2,2-4,4}

x-2=1=>x=3=>y=4

x-2=-1=>x=1=>y=-4

x-2=-2=>x=0=>y=0

x-2=2=>x=4=>y=2

x-2=-4=>x=-2=>y=-1

x-2=4=>x=6=>y=1

vay cac cap so nguyen( x,y) la :(3,4),(1,-4),(0,0),(4,2),(-2,-1),(6,1)

x4

 

12

1