![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)
\(\Leftrightarrow\left[x^2+4\left(y^2+7\right)\right]^2=17\left[x^4+\left(y^2+7\right)^2\right]\)
\(\Leftrightarrow16x^4-8x^2\left(y^2+7\right)+\left(y^2+7\right)^2=0\)
\(\Leftrightarrow\left[4x^2-\left(y^2+7\right)\right]^2=0\Leftrightarrow4x^2-y^2-7=0\)
\(\Leftrightarrow\left(2x+y\right)\left(2x-y\right)=7\)
Vì x , y nguyên dương nên \(2x+y>0\)và \(2x+y>2x-y\)
Do đó \(2x+y=7\)và \(2x-y=1\). Vậy \(x=2,y=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)
\(\Leftrightarrow\left[x^2+4\left(y^2+7\right)\right]^2=17\left[x^4+\left(y^2+7\right)^2\right]\)
\(\Leftrightarrow16x^4-8x^2\left(y^2+7\right)+\left(y^2+7\right)^2=0\)
\(\Leftrightarrow\left[4x^2-\left(y^2+7\right)\right]^2=0\)
\(\Leftrightarrow4x^2-y^2-7=0\)
\(\Leftrightarrow\left(2x+y\right)\left(2x-y\right)=7\)
Vì x , y nguyên dương nên \(2x+y>0\) và \(2x+y>2x-y\)
Do đó : \(\left[\begin{array}{nghiempt}2x+y=7\\2x-y=1\end{array}\right.\) \(\Rightarrow x=2;y=3\)
\(16y^4+\left(8x^2+244\right)y^2+x^4+56x^2+784+17x^4+833\)
\(-17y^4+16y^4-238y^2+\left(8x^2+224\right)y^2-4=0\)
\(-\left[y^4+\left(8x^2+14\right)y^2+16x^4-56x^2+4\right]\)
+ Không mất tính tổng quát ta giả sử \(x\le y\)
+ \(2^x+2^y=72\)\(\Rightarrow2^x\left(1+2^{y-x}\right)=72\)
\(\Rightarrow2^x\left(1+2^{y-x}\right)=2\cdot36=2^2\cdot18=2^3\cdot9\)
+ TH1: x = y
\(\Rightarrow\hept{\begin{cases}2^x=36\\1+2^{y-x}=2\end{cases}}\) ( KTM )
+TH2 : x < y
+ Vì \(1+2^{y-x}\) là số lẻ nên chỉ xảy ra trường hợp :
\(\hept{\begin{cases}2^x=2^3\\1+2^{y-x}=9\end{cases}\Rightarrow\hept{\begin{cases}x=3\\2^{y-x}=8\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=6\end{cases}}}\) ( TM )
Vậy x = 3, y = 6 hoặc x = 6 , y = 3