\(\inℤ\) , biết :

\(\left(x+2\right)^2+\left(y+2\rig...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)

29 tháng 4 2019

Bài 1: <Cho là câu a đi>:

a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\) 

\(\rightarrow x+1=50\rightarrow x=49\) 

Vậy x = 49.

12 tháng 2 2017

a) \(\left(x+2\right)\left(y-3\right)=5\)

Ta có bảng sau:

x + 2 1 5 -1 -5
y - 3 5 1 -5 -1
x -1 3 -3 -7
y 8 4 -2 2

Vậy cặp số \(\left(x;y\right)\)\(\left(-1;8\right);\left(3;4\right);\left(-3;-2\right);\left(-7;2\right)\)

b) \(\left|x+2\right|+\left|y+5\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+2\right|=0\\\left|y+5\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

Vậy \(x=-2;y=-5\)

c) tương tự b

d) sai đề

12 tháng 2 2017

d)x\(\in\varnothing\)

17 tháng 5 2017

a) ta có

1 = 1+0

Ta có bảng sau:

x-1 1 0
y-2 0

1

x 2 1
y 2

3

Vậy x=2 , y=2

x=1 , y=3

17 tháng 5 2017

b) Ta có : 0=0+0

ta có bảng sau:

x+3 0
y 0
x -3

Vậy y=0 , x=-3

9 tháng 7 2017

>> Với toán lớp 6 chắc đề bài là tìm x,y nhỉ ? . Lần sau bạn nhớ viết tên đề bài nhé ;) <<

a) \((x−3).(y−2)=7\)

\(\Rightarrow\left(x\text{−}3\right)\inƯ\left(7\right)\)

\(\Rightarrow x\text{−}3\in\left\{1;\text{−}1;7;\text{−}7\right\}\)

Ta có bảng sau :

\(x\text{−}3\) \(1\) \(−1\) \(7\) \(−7\)
\(x\) \(4\) \(2 \) \(10\) \(\text{−}4\)
\(y−2\) 7 −7 1 −1
\(y\) 9 −5 3 1

Vậy .....

b) \((x−1).(y−1)=2\)

\(\Rightarrow\left(x\text{−}1\right)\inƯ\left(2\right)\)

\(\Rightarrow x\text{−}1\in\left\{1;\text{−}1;2;\text{−}2\right\}\)

Ta có bảng sau :

x−1 1 −1 2 −2
x 2 0 3 −1
y−1 2 −2 1 −1
y 3 −1 2 0

Vậy ......

c) \((x−1).(y−2) = 2\)

\(\Rightarrow x\text{−}1\inƯ\left(2\right)\)

\(\Rightarrow x\text{−}1\in\left\{1;\text{−}1;2;\text{−}2\right\}\)

Ta có bảng sau :

x−1 1 −1 2 −2
x 2 0 3 −1
y−2 2 −2 1 −1
y 4 0 3 1

Vậy ...

24 tháng 7 2017

cậu cho mk hỏi cách in đậm số kiểu j vậy?khocroi

12 tháng 4 2019

Bài 1: a) Do (3-2x)2 \(\ge0\) và (y-5)20 \(\ge0\)

mà (3-2x)2+(y-5)20\(\le0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=0\\\left(y-5\right)^{20}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3-2x=0\\y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=3-0=3\\y=0+5=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=5\end{matrix}\right.\)

Vậy: \(x=\frac{3}{2};y=5\)

c) x là các số nguyên hả bạn?
Do (x-3).(x-4)\(\le0\)

\(\Rightarrow\) Có hai trường hợp:

TH1: (x-3)(x-4)=0

Trong hai số (x-3) và (x-4) có một số bằng 0.

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0+3=3\\x=0+4=4\end{matrix}\right.\)

TH2: (x-3)(x-4)<0

Trong hai số x-3 và x-4 có một số là số nguyên dương, 1 số là số nguyên âm.

mà x-4<x-3 \(\Rightarrow\) x-4 là số nguyên âm ( x-4<0) \(\Leftrightarrow\) x<4 (1)

x-3 là số nguyên dương (x-3>0) \(\Rightarrow x>3\) (2)

Từ (1) và (2) \(\Rightarrow\) 3<x<4 mà x là các số nguyên nên x ko tm

Vậy: x\(\in\left\{3;4\right\}\)

Bài 2:

c) (x-12).(y+5)=7=1.7=7.1=-1.-7=-7.-1
\(\Rightarrow\) \(\left[{}\begin{matrix}x-12=1;y+5=7\\x-12=7;y+5=1\\x-12=-1;y+5=-7\\x-12=-7;y+5=-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=13;y=2\\x=19;y=-4\\x=11;y=-12\\x=5;y=-6\end{matrix}\right.\)

Vậy:...

11 tháng 4 2019

Phùng Tuệ Minh

23 tháng 5 2017

a, [x+1]2 + [y+5]2 = 16

Theo đề, ta có: 0 \(\le\)[x+1]\(\le\)16; 0\(\le\)[y+5]2 \(\le\)16

Dễ dàng nhận thấy [x+1]2 và [y+5]2 là hai số chính phương, mà từ 0 - 16 chỉ có hai số chính phương 0 và 16 là có tổng là 16

=> Có hai trường hợp:

\(\hept{\begin{cases}\left[x+1\right]^2=0\\\left[y+5\right]^2=16\end{cases}\Rightarrow}\hept{\begin{cases}x+1=0\\\hept{\begin{cases}y+5=4\\y+5=-4\end{cases}}\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases};}\hept{\begin{cases}x=-1\\y=-9\sqrt[]{}\sqrt[]{}\end{cases}}}\)