\(x+y=2\) và \(\dfrac{2x-1}{5}=\dfrac{3y-2}{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

\(\dfrac{2x-1}{5}=\dfrac{3y-2}{3}=\dfrac{3\left(2x-1\right)}{15}=\dfrac{2\left(3y-2\right)}{6}=\dfrac{6x-3+6y-4}{15+6}=\dfrac{6\left(x+y\right)-7}{21}=\dfrac{5}{21}\\ \Leftrightarrow\left\{{}\begin{matrix}2x-1=\dfrac{5}{21}.5=\dfrac{25}{21}\\3y-2=\dfrac{5}{21}.3=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{23}{21}\\y=\dfrac{19}{21}\end{matrix}\right.\)

19 tháng 12 2021

e cảm ơn a ạ:3

23 tháng 10 2019

a.

\(\frac{2x}{7}=\frac{3y}{2}\Rightarrow4x=21y\)

\(x-y=17\Rightarrow x=17+y\)

\(\Rightarrow4\left(17+y\right)=21y\Rightarrow68+4y=21y\Rightarrow17y=68\Rightarrow y=4\)

\(\Rightarrow x=17+y=17+4=21\)

23 tháng 10 2019

b.

\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\)

\(x\cdot y=40\Rightarrow x=\frac{40}{y}\)

\(\Rightarrow5\cdot\frac{40}{y}=2y\Rightarrow\frac{200}{y}=2y\Rightarrow2y^2=200\Rightarrow y=\pm10\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

x/3=y/2 suy ra 2x=3y => 2x -3y =0

ta có hệ phương trình :

2x-3y =30                  (1)

2x^2+3y^2 =30          (2)

từ (1) => x=30+3y/2 thay vào (2) sẽ tìm được y nha

Được y xong rồi thay vào (1) là tìm được x 

đang vội nên chỉ hướng dẫn vậy thôi nhá !

10 tháng 10 2020

Đặt \(\frac{x}{3}=\frac{y}{2}=k\Rightarrow\hept{\begin{cases}x=3k\\y=2k\end{cases}}\)

2x2 + 3y2 = 30

<=> 2.(3k)2 + 3.(2k)2 = 30

<=> 2.9k2 + 3.4k2 = 30

<=> 18k2 + 12k2 = 30

<=> 30k2 = 30

<=> k2 = 1

<=> k = ±1

Với k = 1 => x = 3 ; y = 2

Với k = -1 => x = -3 ; y = -2

1 tháng 11 2017

a. Áp dụng t/c dãy tỉ sô bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{3y}{12}=\dfrac{x-3y}{3-12}=\dfrac{36}{-9}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-4\Rightarrow x=-12\\\dfrac{y}{4}=-4\Rightarrow y=-16\end{matrix}\right.\)

Vậy.............

b. Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x+3y}{4+9}=\dfrac{39}{13}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=3\Rightarrow x=6\\\dfrac{y}{3}=3\Rightarrow y=9\end{matrix}\right.\)

Vậy.........

c. Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{4x}{12}=\dfrac{3y}{15}=\dfrac{4x-3y}{12-15}=\dfrac{12}{-3}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-4\Rightarrow x=-12\\\dfrac{y}{5}=-4\Rightarrow y=-20\end{matrix}\right.\)

Vậy............

1 tháng 11 2017

a, \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{3}=\dfrac{3y}{12}\)

Áp dụng t/c dãy tỉ số = nhau ,ta có :

\(\dfrac{x}{3}=\dfrac{3y}{12}=\dfrac{x-3y}{3-12}=\dfrac{36}{-9}=-4\)

\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=-4\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-16\end{matrix}\right.\)

Vậy ...

b,c tương tự

11 tháng 7 2017

Tìm x, y, z biết:

a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và 2x + 3y + z = 17

Giải

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}\) và 2x + 3y + z = 17

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}=\dfrac{2x+3y+z}{4+9+4}=\dfrac{17}{17}=1\)

\(\dfrac{x}{2}=1\Rightarrow x=2\)

\(\dfrac{y}{3}=1\Rightarrow y=3\)

\(\dfrac{z}{4}=1\Rightarrow z=4\)

Vậy...

b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và (x - y)2 + (y - z)2 = 2

Giải

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{\left(x-y\right)^2+\left(y-z\right)^2}{\left(2-3\right)^2+\left(3-4\right)^2}=\dfrac{2}{2}=1\)

\(\dfrac{x}{2}=1\Rightarrow x=2\)

\(\dfrac{y}{3}=1\Rightarrow y=3\)

\(\dfrac{z}{4}=1\Rightarrow z=4\)

Vậy...

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

a)

ĐKXĐ: \(2x\geq 0\Leftrightarrow x\geq 0\)

Vậy TXĐ của $x$ là \(D= [0;+\infty)\)

b)

ĐK: \((2x-1)(x+3)\neq 0\Leftrightarrow \left\{\begin{matrix} 2x-1\neq 0\\ x+3\neq 0\end{matrix}\right.\Leftrightarrow \Leftrightarrow \left\{\begin{matrix} x\neq \frac{1}{2}\\ x\neq -3\end{matrix}\right.\)

Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{1}{2}; -3\right\}\)

c)

ĐK: \(8x^3+1\neq 0\Leftrightarrow x^3\neq \frac{-1}{8}\Leftrightarrow x\neq \frac{-1}{2}\)

Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{-1}{2}\right\}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

d)

ĐK:

\(|x-2015|+1\neq 0\Leftrightarrow |x-2015|\neq -1\Leftrightarrow x\in\mathbb{R}\)

Vậy TXĐ \(D=\mathbb{R}\)

e)

ĐK: \(\left\{\begin{matrix} |x-1,2|\neq 0\\ 2x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1,2\\ x\neq 2,5\end{matrix}\right.\)

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{1,2; 2,5\right\}\)

f)

ĐK: \(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{\pm 2\right\}\)

1 tháng 10 2017

a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{5x}{10}=\dfrac{3y}{9}=\dfrac{5x+3y}{10+9}=\dfrac{38}{19}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.2=4\\y=2.3=6\end{matrix}\right.\)

b) \(\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{5^2}=\dfrac{x^2+y^2}{9+25}=\dfrac{68}{34}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.5=10\end{matrix}\right.\)

c) Nếu phải dùng tính chất của dãy tỉ số bằng nhau thì mình không chắc mình làm đúng, thôi thì:

Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)

\(x.y=10\) nên \(2k.5k=10\Rightarrow10k^2=10\Rightarrow k^2=1\Rightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1.2=2\\x=\left(-1\right).2=2\end{matrix}\right.\\\left[{}\begin{matrix}y=1.5=5\\y=\left(-1\right).5=-5\end{matrix}\right.\end{matrix}\right.\)

8 tháng 1 2020

\(\frac{x-1}{-15}=\frac{-60}{x-1}\)

\(\Leftrightarrow\left(x-1\right)^2=900\\ \Leftrightarrow\left(x-1\right)^2=\left(\pm30\right)^2\\ \Rightarrow x-1\in\left\{30;-30\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=30\\x-1=-30\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=31\\x=-29\end{matrix}\right.\)

Vậy...

7 tháng 8 2020

Câu 1 kk bt lm ak

22 tháng 7 2017

\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)

\(\Rightarrow x\left(1-2y\right)=40\)

\(\Rightarrow x;1-2y\in U\left(40\right)\)

\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)

Mà 1-2y lẻ nên:

\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)

\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)

b tương tự.

c) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)

d tương tự

12 tháng 4 2024

Bài 1:

|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}

A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5

A(-1) = \(\dfrac{2}{9}\) + 1 + 5

A (-1) = \(\dfrac{56}{9}\)

A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5

A(1) = \(\dfrac{2}{9}\) - 1 + 5

A(1) = \(\dfrac{38}{9}\)

 

12 tháng 4 2024

|y| = 1 ⇒ y \(\in\) {-1; 1} 

⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))

B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)

B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\)).1 + 12

B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1

B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\) 

B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)

B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2

B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1

B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)