K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

Ta có

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}\)

áp dụng tính chất DTSBN ta có

\(\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x+2y+2z}{6+6+12}=1\)

\(+\frac{x}{2}=1\Rightarrow x=2\)

\(\frac{y}{3}=1\Rightarrow y=3\)

\(\frac{z}{6}=1\Rightarrow z=6\)

23 tháng 9 2019

Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)

          \(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)

Áp dụng TC của dãy tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=\frac{x+y+z}{15+20+24}=\frac{59}{59}=1\)

\(\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=24\end{cases}}\)

          

10 tháng 10 2017

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{6}\Rightarrow\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}\)

áp dụng tính chất dãy tỉ số bn ta có 

\(\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y+2z}{15-6+12}=\frac{24}{21}=\frac{8}{7}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{40}{7}\\y=\frac{24}{7}\\z=\frac{48}{7}\end{cases}}\)

10 tháng 10 2017

đề bài câu a xem lại nhé 

b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4};x+z=18\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)

\(\Rightarrow\)\(x=3.2=6\)

\(y=3.3=9\)

\(z=3.4=12\)

12 tháng 12 2021

7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36

Nên theo tính chất của dãy tỉ số bằng nhau ta có:

 \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6

 \(\Rightarrow\)x=6.5=30

     y=6.6=36

     z=6.7=42

vậy x=30,y=36,z=42

 

 

2 tháng 10 2018

\(\text{Ta có:}\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{3x-2y+2z}{6-6+12}=\frac{24}{12}=2\left(\text{T/c dãy tỉ số bằng nhau}\right).\)

\(\Rightarrow\frac{x}{2}=2,\text{ vậy x= 4}\)

\(\Rightarrow\frac{y}{3}=2,\text{ vậy y= 6}\)

\(\Rightarrow\frac{z}{6}=2,\text{ vậy z= 12}\)

DD
26 tháng 10 2021

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{3x-2y+2z}{3.2-2.3+2.6}=\frac{24}{12}=2\)

\(\Leftrightarrow\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.6=12\end{cases}}\)

22 tháng 6 2017

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)

22 tháng 6 2017

e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)

Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).

22 tháng 6 2015

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42

24 tháng 7 2019

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...