Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Leftrightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)\(=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)\(=\frac{\left(2x+3y-z\right)-5}{9}=\frac{45}{9}=5\)
\(\Rightarrow\)x=11;y=17;z=23
2/ Theo bài ra, ta có: \(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)\(\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{2}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+2+\frac{5}{4}}\)\(=\frac{49}{\frac{19}{4}}=\frac{196}{19}\)
\(\Rightarrow\)x=\(\frac{294}{19};y=\frac{392}{19};z=\frac{245}{19}\)
Mình chỉ hướng dẫn giải thôi nhá chứ nhiều bài quá
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\Rightarrow x=5k;y=7k\)
Thay x.y=315 => 5k.7k=315 <=> 35k2=315 => k2=9 => k=3
x=5.3=15 ; y=7.3=21
b) 5x=9y<=> \(\frac{x}{9}=\frac{y}{5}\)
Theo TCDTSBN ta có : \(\frac{x}{9}=\frac{y}{5}=\frac{2x+3y}{2.9+3.5}=\frac{-33}{33}=-1\)
x/9=-1=>x=-9 ; y/5=-1=>y=-5
các bài còn lại tương tự b
#)Giải :
a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)
Vậy x = 45; y = 60; z = 84
b) Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)
\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)
Thay (1) vào (+) ta được :
\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)
\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)
Thay (2) và (+2) ta được :
\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)
\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)
Mà \(xyz=810\Rightarrow30k^3=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
Thay vào tìm x,,z.
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-7}=\frac{y}{4}=\frac{2x}{2.\left(-7\right)}=\frac{3y}{3.4}=\frac{2x-3y}{\left(-14\right)-12}=\frac{-78}{-26}=3\)
\(\frac{x}{-7}=3\Rightarrow x=3.\left(-7\right)=-21\)
\(\frac{y}{4}=3\Rightarrow y=3.4=12\)
Vậy x=-21 và y=12
b) mình ngĩ đề là -2x+7y-3z mới đúng
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-3}=\frac{y}{4}=\frac{z}{5}=\frac{-2x}{-2.\left(-3\right)}=\frac{7y}{7.4}=\frac{3z}{3.5}=\frac{-2x+7y-3z}{6+28-15}=\frac{171}{19}=9\)
\(\frac{x}{-3}=9\Rightarrow x=9.\left(-3\right)=-27\)
\(\frac{y}{4}=9\Rightarrow y=9.4=36\)
\(\frac{z}{5}=9\Rightarrow y=9.5=45\)
Vậy x=-27 ; y=36 và z=45
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{-3x}{-3.4}=\frac{2y}{2.\left(-5\right)}=\frac{-3x+2y}{\left(-12\right)+\left(-10\right)}=\frac{55}{-22}=\frac{-5}{2}\)
\(\frac{x}{4}=\frac{-5}{2}\Rightarrow x=\frac{-5}{2}.4=-10\)
\(\frac{y}{-5}=\frac{-5}{2}\Rightarrow y=\frac{-5}{2}.\left(-5\right)=\frac{25}{2}\)
Vậy x=-10 và y=25/2