Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau có: \(\frac{y^2-x^2}{3}=\frac{x^2+y^2}{5}=\frac{\left(y^2-x^2\right)+\left(x^2+y^2\right)}{3+5}=\frac{\left(y^2-x^2\right)-\left(x^2-y^2\right)}{3-5}\)
=> \(\frac{2y^2}{8}=\frac{-2x^2}{-2}\Rightarrow\frac{y^2}{4}=x^2\) => y2 = 4x2
Ta có x10.y10 = x10. (4x2)5 = 1024.x20 = 1024 => x20 = 1 => x =1 hoặc x = -1
=> y2 = 4 => y = 2 hoặc y = -2
Vậy ...
\(\dfrac{y^2-x^2}{3}=\dfrac{y^2+x^2}{5}=\dfrac{2y^2}{8}=\dfrac{2x^2}{2}\)
\(\Rightarrow\dfrac{2y^2}{8}=\dfrac{2x^2}{2}\Rightarrow y^2=4x^2\)
Lại có \(x^{10}.y^{10}=1024\Leftrightarrow x^{10}.\left(y^2\right)^5=1024\)
\(\Leftrightarrow x^{10}.\left(4x^2\right)^5=1024\Leftrightarrow4^5.x^{10}.x^{10}=1024\)
\(\Leftrightarrow1024.x^{20}=1024\Rightarrow x^{20}=1\Rightarrow x=\pm1\)
\(\Rightarrow y^2=4x^2=4\Rightarrow y=\pm2\)
Vậy \(\left\{{}\begin{matrix}x=\pm1\\y=\pm2\end{matrix}\right.\)
Ta có :
\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}\)
\(\Leftrightarrow5\left(y^2-x^2\right)=3\left(x^2+y^2\right)\)
\(\Leftrightarrow5y^2-5x^2=3x^2+3y^2\)
\(\Leftrightarrow5y^2-3y^2=3x^2+5x^2\)
\(\Leftrightarrow2y^2=8x^2\)
\(\Leftrightarrow y^2=4x^2\)
\(\Leftrightarrow y^{10}=1024.x^{10}\)
Lại có : \(x^{10}.y^{10}=1024\)
\(\Leftrightarrow x^{10}.x^{10}.1024=1024\)
\(\Leftrightarrow x^{20}.1024=1024\)
\(\Leftrightarrow x^{20}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
+) Với \(x=1\) \(\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
+) Với \(x=-1\) \(\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy ..
\(x^{10}.y^{10}=1024\Leftrightarrow x^2.y^2=4\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}=\dfrac{y^2-x^2+x^2+y^2}{3+5}=\dfrac{2y^2}{8}=\dfrac{y^2}{4}\)(1)
\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}=\dfrac{x^2+y^2-y^2+x^2}{5-3}=\dfrac{2x^2}{2}=\dfrac{x^2}{1}\)(2)
Từ (1) và (2) ta có: \(\dfrac{y^2}{4}=\dfrac{x^2}{1}\)
Lúc này bạn có: \(\left\{{}\begin{matrix}x^2y^2=4\\\dfrac{y^2}{4}=\dfrac{x^2}{1}\end{matrix}\right.\) dễ dàng tìm được nghiệm của phương trình
x/2=y/3 <=> x/8 = y/12 (nhân 2 vế với 1/4) (1)
y/4=z/5 <=> y/12 = z/15 (nhân hai vế với 1/3) (2)
Từ (1) và (2) suy ra:
x/8=y/12=z/15 = (x+y-z)/(8+12-15) = 10/5 =2
(vì x+y-z=10 và áp dụng tính chất của dãy tỷ số bằng nhau)
Vậy:
x = 2.8=16
y = 2.12 = 24
z = 2.15 = 30
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}\)
\(\frac{x}{8}=2\Leftrightarrow x=16\)
\(\frac{y}{12}=2\Leftrightarrow y=24\)
\(\frac{z}{15}=2\Leftrightarrow z=30\)
Vậy x = 16 , y=24 và z = 30
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{y^2+x^2+y^2-x^2}{3+5}=\frac{2y^2}{8}=\frac{y^2}{4}\)
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{\left(x^2+y^2\right)-\left(y^2-x^2\right)}{5-3}=\frac{2x^2}{2}=x^2\)
\(\frac{y^2}{4}=x^2\Rightarrow\frac{y^{10}}{1024}=\frac{x^{10}}{1}\Rightarrow x^{20}=\frac{x^{10}.y^{10}}{1024}=\frac{1024}{1024}=1\)
=>x=-1;1
xét x=-1=>y2=4=>y=-2;2
xét x=1=>y2=4=>y=-2;2
Vậy (x;y)=(-1;-2);(-1;2);(1;-2);(1;2)
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{y^2+x^2+y^2-x^2}{3+5}=\frac{2y^2}{8}=\frac{y^2}{4}\)
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{\left(x^2+y^2\right)-\left(y^2-x^2\right)}{5-3}=\frac{2x^2}{2}=x^2\)
\(\frac{y^2}{4}=x^2\Rightarrow\frac{y^{10}}{1024}=\frac{x^{10}}{1}\Rightarrow x^{20}=\frac{x^{10}.y^{10}}{1024}=\frac{1024}{1024}=1\)
=>x=-1;1
xét x=-1=>y2=4=>y=-2;2
xét x=1=>y2=4=>y=-2;2
Vậy (x;y)=(-1;-2);(-1;2);(1;-2);(1;2)
Ta có:\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\Rightarrow5\left(y^2-x^2\right)=3\left(y^2+x^2\right)\Rightarrow5y^2-5x^2=3y^2+3x^2\Rightarrow2y^2=8x^2\Rightarrow y^2=4x^2\)
\(\Rightarrow\frac{y^2}{4}=\frac{x^2}{1}\Rightarrow\frac{y}{2}=\frac{x}{1}\)
Đặt \(\frac{x}{1}=\frac{y}{2}=k\Rightarrow x=k,y=2k\)
Lại có: \(x^{10}y^{10}=k^{10}.\left(2k\right)^{10}=k^{10}.1024k^{10}=1024k^{20}=1024\)
\(\Rightarrow k^{20}=1\Rightarrow k=\pm1\)
Với k = 1 => x = 1, y = 2
Với k = -1 => x = -1, y = -2
Vậy...
\(x^2-\frac{y^2}{3}=x^2+\frac{y^2}{-5}\)nếu bạn chép sai đề => kq sài vô lý
sua de lam tiep
\(\left(xy\right)^{10}=1024=2^{10}=>xy=2=>\left(xy\right)^2=4\)
\(\frac{x^2-y^2}{3}=\frac{x^2+y^2}{-5}=\frac{2x^2}{-2}=-x^2\)
\(\Leftrightarrow\frac{x^2-y^2}{3}=-x^2=>4x^2-y^2=0\)\(\Leftrightarrow4x^2=y^2\Leftrightarrow4x^2.y^2=y^2.y^2=>y^4=4.4=16=2^4=>y=!2!\)
KL:
y=!2!
x=!1!
(x,y)=(-1,-2); (1,2)