Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\frac{4}{7}x-1\right)^{2010}\ge0\forall x\)
\(\left(\frac{-2}{3}y+4\right)^{68}\ge0\forall y\)
\(\Rightarrow\left(\frac{4}{7}x-1\right)^{2010}+\left(\frac{-2}{3}y+4\right)^{68}\ge0\forall x,y\)
mà theo đề bài: \(\left(\frac{4}{7}x-1\right)^{2010}+\left(\frac{-2}{3}y+4\right)^{68}\le0\)
\(\Rightarrow\left(\frac{4}{7}x-1\right)^{2010}+\left(\frac{-2}{3}y+4\right)^{68}=0\)
\(\Rightarrow\left(\frac{4}{7}x-1\right)^{2010}=0;\left(\frac{-2}{3}y+4\right)^{68}=0\)
Với \(\left(\frac{4}{7}x-1\right)^{2010}=0\)
\(\Rightarrow\frac{4}{7}x-1=0\Rightarrow x=\frac{7}{4}\)
Với \(\left(\frac{-2}{3}y+4\right)^{68}=0\)
\(\Rightarrow\frac{-2}{3}y+4=0\Rightarrow y=6\)
Vậy \(\left[\begin{matrix}x=\frac{7}{4}\\y=6\end{matrix}\right.\)
a) Đề chắc là: \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\)
Ta có: \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\left(\forall x,y,z\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|=0\\\left|y+\frac{1890}{1975}\right|=0\\\left|z-2004\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{378}{395}\\z=2004\end{cases}}\)
b) Ta có: \(\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\ge0\left(\forall x,y,z\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x+\frac{9}{2}\right|=0\\\left|y+\frac{4}{3}\right|=0\\\left|z+\frac{7}{2}\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{9}{2}\\y=-\frac{4}{3}\\z=-\frac{7}{2}\end{cases}}\)
a) Ta có: \(xy+2-x+y=0\)
\(\Rightarrow\left(xy-x\right)+y-1+3=0\)
\(\Rightarrow x\times\left(y-1\right)+\left(y-1\right)=-3\)
\(\Rightarrow\left(x+1\right)\times\left(y-1\right)=\left(-1\right)\times3=\left(-3\right)\times1\)
Ta có bảng giá trị:
\(x+1\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(y-1\) | \(3\) | \(-3\) | \(1\) | \(-1\) |
\(x\) | \(-2\) | \(0\) | \(-4\) | \(2\) |
\(y\) | \(4\) | \(-2\) | \(2\) | \(0\) |
\(\left(N\right)\) | \(\left(N\right)\) | \(\left(N\right)\) | \(\left(N\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(-2,4\right);\left(0,-2\right);\left(-4,2\right);\left(2,0\right)\right\}\)
a/ \(\left(x+2\right)\left(x-4\right)\le0\)
\(\Rightarrow\begin{cases}x+2\ge0\\x-4\le0\end{cases}\) hoặc \(\begin{cases}x+2\le0\\x-4\ge0\end{cases}\)
\(\Rightarrow-2\le x\le4\)
b/ \(\frac{2x+3}{x-4}>1\Leftrightarrow\frac{2x+3}{x-4}-1>0\Leftrightarrow\frac{x+7}{x-4}>0\)
\(\Rightarrow\begin{cases}x+7>0\\x-4>0\end{cases}\) hoặc \(\begin{cases}x+7< 0\\x-4< 0\end{cases}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x>4\\x< -7\end{array}\right.\)
c/ \(\frac{x+3}{x+4}>1\Rightarrow\frac{x+3}{x+4}-1>0\Rightarrow-\frac{1}{x+4}>0\Rightarrow x+4< 0\Rightarrow x< -4\)
\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)
Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\); \(\left(3y-x\right)^{2020}\ge0\forall x,y\)
\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)
Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)
Từ giả thiết y = \(\frac{x}{4}\) và \(\frac{x^2}{4}=9\) => x = \(\sqrt{36}=6\left(x\ge0\right)\)
y=\(\frac{6}{4}=\frac{3}{2}\)
Vậy : E đúng
Hjhj
Anh thấy thường thường có 4 đáp án , liếc thấy cái cuối cùng đúng nên chọn D
:v
a.|x-1/2|,|y+3/2|,|7-5/2| đều lớn hơn hoặc bằng 0
=>không tìm thấy x,y
b
Có |x-1/2|lớn hơn hoặc bằng 0
(x-y)\(^{^2}\)lớn hơn hoặc băng 0
\(\Rightarrow\)|x-1/2|+(x-y)\(^2\)lớn hơn hoăc bằng 0
mà |x-1/2|+(x-y)^2 nhỏ hơn hoặc bằng 0
\(\Rightarrow\)|x-1/2|+(x-y)\(^2\)=0
\(\Rightarrow\)|x-1/2|=0 và ( x-y)\(^2\)=0
\(\Rightarrow\)x=1/2 \(\Rightarrow\)x=y=1/2
Vậy x=y=1/2