Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: \(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{-12}{-2}=6\)
=> \(\hept{\begin{cases}x=6.5=30\\y=6.7=42\end{cases}}\)
b. x.8 = y. 16
=> \(\frac{x}{16}=\frac{y}{8}=\frac{y-x}{8-16}=\frac{64}{-8}=-8\)
=> \(\hept{\begin{cases}x=-8.16=-128\\y=-8.8=-64\end{cases}}\)
c.Ta có: \(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{x-y}{2+5}=\frac{7}{7}=1\)
=> \(\hept{\begin{cases}x=1.2=2\\y=1.\left(-5\right)=-5\end{cases}}\)
d. Ta có: xy = 10 => x = \(\frac{10}{y}\)(1)
Thay (1) vào \(\frac{x}{2}=\frac{y}{5}\), ta được:
\(\frac{10}{\frac{y}{2}}=\frac{y}{5}\)=> \(\frac{5}{y}=\frac{y}{5}\)
=> y2 = 25
=> y = + 5
y = 5 => x = \(\frac{10}{y}\)= \(\frac{10}{5}\)= 2
y = -5 => x = \(\frac{10}{y}\)= \(\frac{10}{-5}\) = -2
Vậy y = 5; x = 2
y = - 5: x = -2
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
Mà \(x-y=-12\)
\(\Rightarrow5k-7k=-12\)
\(\Leftrightarrow-2k=-12\)
\(\Leftrightarrow k=6\)
\(\Rightarrow\hept{\begin{cases}x=5k=30\\y=7k=42\end{cases}}\)
Vậy ...
b) Ta có : \(x.8=y.16\Leftrightarrow\frac{x}{16}=\frac{y}{8}\)
Đặt \(\frac{x}{16}=\frac{y}{8}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=16k\\y=8k\end{cases}}\)
Mà \(y-x=64\)
\(\Rightarrow8k-16k=64\)
\(\Leftrightarrow-8k=64\)
\(\Leftrightarrow k=-2\)
\(\Rightarrow\hept{\begin{cases}x=16k=-32\\y=8k=-16\end{cases}}\)
Vậy ...
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{9}=\frac{y}{15}\)
\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{35}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{15}=\frac{z}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{9}=\frac{y}{15}=\frac{z}{35}=\frac{x-y}{9-15}=\frac{12}{-6}=-2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-2\\\frac{y}{15}=-2\\\frac{z}{35}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=-18\\y=-30\\z=-70\end{cases}}}\)
Vậy,..........
Vì \(\frac{x}{3}=\frac{y}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}\)
mà x-y=12
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{12}{-2}=-6\)
+Vì \(\frac{x}{3}=-6\Rightarrow x=\left(-6\right)\cdot3=-18\)
+Vì \(\frac{y}{5}=-6\Rightarrow y=\left(-6\right)\cdot5=-30\)
Vì \(\frac{z}{7}=\frac{y}{3}\)
mà y =-30
\(\Rightarrow\frac{z}{7}=-\frac{30}{3}=-10\)
\(\Rightarrow z=-10\cdot7=70\)
Vậy x= -18; y = -30 ; z = -70
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
x/5=10=>50
y/3=10=>30
2/ \(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{48}{12}=4\)
x/5=4=>20
y/7=4=>28
3/ \(\frac{x}{-2}=\frac{y}{5}=\frac{x+y}{-2+5}=\frac{12}{3}=4\)
x/-2=4=>-8
y/5=4=>20
3.\(\frac{x}{-2}=\frac{y}{5}=\frac{x+y}{-2+5}=\frac{12}{3}=4\) =>x=-2.4=-8;y=5.4=20
1) \(\frac{x+4}{7+y}=\frac{4}{7}\)\(\Rightarrow7\left(x+4\right)=4\left(7+y\right)\)
\(\Rightarrow7x+28=28+4y\)
\(\Rightarrow7x=4y\)
\(\Rightarrow\frac{x}{4}=\frac{y}{7}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{22}{11}=2\)
x/4 = 2 => x = 4 x 2 = 8
y/7 = 2 => y = 2 x 7 = 14
a) Giải:
Ta có: \(\frac{x}{y}=-2\Rightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-2}=\frac{y}{1}=\frac{x+y}{-2+1}=\frac{12}{-1}=-12\)
+) \(\frac{x}{-2}=-12\Rightarrow x=24\)
+) \(\frac{y}{1}=-12\Rightarrow y=-12\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(24;-12\right)\)
b) Giải:
Ta có: \(\frac{x}{y}=\frac{7}{10}\Rightarrow\frac{x}{7}=\frac{y}{10}\)
Đặt \(\frac{x}{7}=\frac{y}{10}=k\)
\(\Rightarrow x=7k;y=10k\)
Mà \(xy=36\)
\(7k10k=36\)
\(\Rightarrow70k^2=36\)
\(\Rightarrow k^2=\frac{18}{35}\) ( sai đề )
c) Giải:
Ta có: \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\Rightarrow\frac{-2x}{1}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-2x}{1}=\frac{3y}{3}=\frac{-2x+3y}{1+3}=\frac{7}{4}\)
+) \(\frac{-2x}{1}=\frac{7}{4}\Rightarrow x=\frac{-7}{8}\)
+) \(\frac{3y}{3}=\frac{7}{4}\Rightarrow y=\frac{7}{4}\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(\frac{-7}{8};\frac{7}{4}\right)\)
a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/4 =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2
=> x=2.4=8
y=2.3=6
z=2.9=18
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
ADTCCDTSBN, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(y=2.3=6\)
\(z=2.9=18\)
b) Đề có nhầm lẫn j k nhỉ =.=
c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)
ADTCCDTSBN, ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)
\(\Rightarrow x=-40:5=-8\)
\(y=-40:8=-5\)
\(z=-40:20=-2\)
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-24}{8}=-3\)
\(\frac{x}{3}=-3\Rightarrow x=\left(-3\right).3=-9\)
\(\frac{y}{5}=-3\Rightarrow y=\left(-3\right).5=-15\)
b) \(\frac{x}{5}=\frac{y}{8}=\frac{x-y}{5-8}=\frac{15}{-3}=-5\)
\(\frac{x}{5}=-5\Rightarrow x=\left(-5\right).5=-25\)
\(\frac{y}{8}=-5\Rightarrow y=\left(-5\right).8=-40\)
c) 7x=4y <=> x/4=y/7
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{12}{11}\)
\(\frac{x}{4}=\frac{12}{11}\Rightarrow x=\frac{12}{11}.4=\frac{48}{11}\)
\(\frac{y}{7}=\frac{12}{11}\Rightarrow y=\frac{12}{11}.7=\frac{84}{11}\)
d) tt câu c
e) x/5=y/8;z/3=y/12 <=> x/60=y/96=z/24
\(\frac{x}{60}=\frac{y}{96}=\frac{z}{24}=\frac{4x}{4.60}=\frac{2y}{2.96}=\frac{z}{24}=\frac{2y+z-4x}{192+24-240}=\frac{30}{-24}=\frac{-5}{4}\)
\(\frac{x}{60}=\frac{-5}{4}\) => x=-5/4.60=-75
y/96=-5/4 => y=-5/4.96=-120
z/24=-5/4 => z=-5/4.24=-30
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{12}{12}=1\)
suy ra :\(\frac{x}{5}=1\Rightarrow x=5\)
\(\frac{y}{7}=1\Rightarrow y=7\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{12}{12}=1\)
\(x=5;y=7\)