Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x}{y}=\frac{2}{3}\) => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{2x}{4}=\frac{3y}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{4}=\frac{3y}{9}=\frac{2x+3y}{4+9}=\frac{208}{13}=16\)
=> \(\hept{\begin{cases}\frac{x}{2}=16\\\frac{y}{3}=16\end{cases}}\) => \(\hept{\begin{cases}x=16.2=32\\y=16.3=48\end{cases}}\)
Vậy ...
b) \(\frac{3}{x}=\frac{4}{y}\) => \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{-3x}{-9}=\frac{5y}{20}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{-3x}{-9}=\frac{5y}{20}=\frac{-3x+5y}{-9+20}=\frac{33}{11}=3\)
=> \(\hept{\begin{cases}\frac{x}{3}=3\\\frac{y}{4}=3\end{cases}}\) => \(\hept{\begin{cases}x=3.3=9\\y=3.4=12\end{cases}}\)
Vậy ...
a) \(\text{Ta có : }\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{2x}{4}=\frac{3y}{9}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\frac{2x}{4}=\frac{3y}{9}=\frac{2x+3y}{4+9}=\frac{208}{13}=16\)
\(\Rightarrow\frac{2x}{4}=16\Rightarrow2x=64\Rightarrow x=32\)
\(\Rightarrow\frac{3y}{9}=16\Rightarrow3y=144\Rightarrow y=48\)
\(\text{Vậy }x=32;y=48\)
b) \(\text{Ta có : }\frac{3}{x}=\frac{4}{y}\Leftrightarrow\frac{y}{4}=\frac{x}{3}\Leftrightarrow\frac{5x}{20}=-\frac{3x}{-9}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có : }\frac{5x}{20}=\frac{-3x}{-9}=\frac{5y+\left(-3x\right)}{20+\left(-9\right)}=\frac{33}{11}=3\)
\(\text{Nếu }\frac{-3x}{-9}=3\Rightarrow-3x=-27\Rightarrow x=9\)
\(\text{Nếu}\frac{5y}{20}=3\Rightarrow5y=60\Rightarrow y=12\)
\(\text{Vậy}x=9;y=12\)
c) \(\text{Ta có : }8x=5y\Rightarrow\frac{x}{5}=\frac{y}{8}\Leftrightarrow\frac{2x}{10}=\frac{y}{8}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\frac{2x}{10}=\frac{y}{8}=\frac{y-2x}{10-8}=\frac{-10}{2}=-5\)
\(\text{Nếu }\frac{2x}{10}=-5\Rightarrow2x=-50\Rightarrow x=-25\)
\(\text{Nếu }\frac{y}{8}=-5\Rightarrow y=-40\)
\(\text{Vậy}x=-25;y=-40\)
Tìm các số x , y biết :
a) \(\frac{x}{3}=\frac{y}{4},2x+5y=10\)
b)\(\frac{2x}{5}=\frac{3y}{7},x+y=29\)
b) Theo đề ta có:
\(\frac{2x}{5}=\frac{3y}{7}\)
=> \(\frac{2x}{30}=\frac{3y}{42}\)
Hay:\(\frac{x}{15}=\frac{y}{14}\) và x+y= 29
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{14}=\frac{x+y}{15+14}=\frac{29}{29}=1\)
=> \(\frac{x}{15}=1\)
\(\frac{y}{14}=1\)
=> x = 15
y = 14
bạn kiểm tra lại thử giúp mình nha! ^-^!
x/3=y/4
=>2x/6=5y/20 và 2x+5y=10
Áp dụng t/c dãy tỉ số bằng nhau ta có:
2x/6 = 5y/20=2x+5y/6+20=10/26=5/13
=>x=5/13 . 3=15/13
y=5/13 . 4=20/13
b)2x/5 = 3y/7=>3x/7,5=3y/7=>x/7,5=y/7 và x+y=29
Áp dụng t/c dãy tỉ số bằng nhau ta có:
x/7,5=y/7=x+y/7,5+7=29/14,5=2
=>x=2.7,5=15
y=2.7=14
Có: \(\frac{x}{y}=\frac{3}{4}\Leftrightarrow\frac{x}{3}=\frac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{10}{26}=\frac{5}{13}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{13}.3=\frac{15}{13}\\y=\frac{5}{13}.4=\frac{20}{13}\end{cases}}\)
VẬy../
mk cung hoc lop 7 nhung cai bai do ma ko lam dc thi chet di
Vì \(\frac{x}{3}=\frac{y}{4}\)và \(\frac{y}{5}=\frac{z}{6}\)nên ta cố gắng biến đổi sao cho \(\frac{y}{4}\)và\(\frac{y}{5}\)bằng nhau để thành tỉ lệ thức
Biến đổi: \(\frac{x}{3}=\frac{y}{4}\)thành\(\frac{x}{3}=\frac{5y}{20}\)(nhân 5 cho tử và mẫu của \(\frac{y}{4}\)) . Suy ra \(\frac{x}{15}=\frac{y}{20}\)(1)
Biến đổi: \(\frac{y}{5}=\frac{z}{6}\)thành \(\frac{4y}{20}=\frac{z}{6}\). Suy ra \(\frac{y}{20}=\frac{z}{24}\)(2)
Từ (1) và (2) ta có tỉ lệ thức: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)và \(2x+5y-4z=34\)
hay \(\frac{2x}{30}=\frac{5y}{100}=\frac{4z}{96}=\frac{2x+5y-4z}{30+100-96}=\frac{34}{34}=1\)
Tới đây các em tự giải: \(x=15,y=20,z=24\)
Ta có :
\(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\\\frac{y}{5}=\frac{z}{6}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{15}=\frac{y}{20}\\\frac{y}{20}=\frac{z}{24}\end{cases}\Leftrightarrow}\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
Áp dụng tính chất của dãy tire số bằng nhau , ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=\frac{2x+5y-4z}{30+100-96}=\frac{34}{34}=1\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=24\end{cases}}\)
a, \(\frac{x}{4}=\frac{y}{5}\) và x + y = 4
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{4}{9}\)
=> \(\hept{\begin{cases}\frac{x}{4}=\frac{4}{9}\\\frac{y}{5}=\frac{4}{9}\end{cases}}\Rightarrow\hept{\begin{cases}9x=16\\9y=20\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{9}\\y=\frac{20}{9}\end{cases}}\)
b, \(\frac{x}{6}=\frac{y}{3}\) và x - 2y = 5
Ta có : \(\frac{x}{6}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{2y}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{2y}{6}=\frac{x-2y}{6-6}=\frac{5}{0}\) vô lý
c, \(\frac{x}{3}=\frac{y}{7}\) và x - 5y = 4
Ta có : \(\frac{x}{3}=\frac{y}{7}\)=> \(\frac{x}{3}=\frac{5y}{35}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{5y}{35}=\frac{x-5y}{3-35}=\frac{4}{-32}=\frac{-4}{32}=\frac{-1}{8}\)
=> \(\hept{\begin{cases}\frac{x}{3}=\frac{-1}{8}\\\frac{y}{7}=\frac{-1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}8x=-3\\8y=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\x=-\frac{7}{8}\end{cases}}\)
d, Tương tự áp dụng như bài a,c
a) \(\text{Ta có : }\frac{x}{3}=\frac{y}{2}\Leftrightarrow2x=3y\Leftrightarrow x=\frac{3y}{2}\)
Thay \(x=\frac{3y}{2}\)vào biểu thức \(2x^2+3y^2=30\). Ta được :
\(2\cdot\left(\frac{3y}{2}\right)^2+3y^2=30\Leftrightarrow\left(2\cdot\frac{9}{4}\right)y^2+3y^2=30\)
\(\Leftrightarrow\frac{9}{2}y^2+3y^2=30\Leftrightarrow\frac{15}{2}y^2=30\Leftrightarrow y^2=4\Leftrightarrow y=2\)
Với \(y=2\Rightarrow x=\frac{3.2}{2}=3\)
Vậy x = 3 và y = 2
b) \(\text{Ta có : }\frac{x}{3}=\frac{y}{4}\Leftrightarrow4x=3y\Leftrightarrow x=\frac{3y}{4}\)
Thay \(x=\frac{3y}{4}\)vào biểu thức \(2x^2-3y^2=-120\)Ta được :
\(2\cdot\left(\frac{3y}{4}\right)^2-3y^2=-120\Leftrightarrow\left(2\cdot\frac{9}{16}\right)y^2-3y^2=-120\)
\(\Leftrightarrow\frac{9}{8}y^2-3y^2=-120\Leftrightarrow-\frac{15}{8}y^2=-120\Leftrightarrow y^2=64\Leftrightarrow y=8\)
Với \(y=8\Rightarrow x=\frac{3.8}{4}=6\)
Vậy y = 8 và x = 6
Ý c tương tự nha
1)
a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).
=> \(\frac{x}{7}=\frac{y}{13}\) và \(x+y=60.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(21;39\right).\)
c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)
=> \(\frac{x}{9}=\frac{y}{10}\) và \(y-x=120.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)
\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1080;1200\right).\)
d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=81.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)
Mình chỉ làm 3 câu thôi nhé, dài quá bạn.
Chúc bạn học tốt!