Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=-1/2x^2+5x^2y^3-8x^3y^2-5x^2y^3+7x^3y^2-6x^2-5/3y
=(-1/2x^2+6x^2)+(5x^2y^3-5x^2y^3)+(-8x^3y^2-7x^3y^2)+5/3y
=11/2x^2+0-15x^3y^2+5/3y
=11/2x^2-15x^3y^2+5/3y
thay x=-1/2 , y=25 vào giá trị biểu thức M ta đc
11/2.(-1/2)^2-15.(-1/2)^3.25^2+5/3.25=7273/6
vậy tại x=-1/2 , y=25 vào giá trị biểu thức M có giá trị là 7273/6
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3x+2}{4}=\frac{2y+2}{5}=\frac{3x+2y+4}{4,5x}=\frac{3x+2+2y+2}{4+5}=\frac{3x+2y+4}{9}\)
\(\Rightarrow4,5x=9\Rightarrow x=2\)
Mà \(\frac{3x+2}{4}=\frac{2y+2}{5}\)
\(\Rightarrow\frac{3.2+2}{4}=\frac{2y+2}{5}\Rightarrow\frac{2y+2}{5}=2\Rightarrow2y+2=10\Rightarrow y=4\)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
B1:
Ta có: a - b = ab => a = ab + b = b(a + 1)
Thay a = b(a + 1) vào a - b = a : b ta có: \(a-b=\frac{b\left(a+1\right)}{b}=a+1\)
=> a - b = a + 1 => a - a - b = 1 => -b = 1 => b = -1
Lại có: ab = a - b
<=> a x (-1) = a - (-1) <=> -a = a + 1 <=> -a - a = 1 <=> -2a = 1 <=> a = -1/2
Vậy...
B2:
a, \(3y\left(y-\frac{2}{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3y=0\\y-\frac{2}{5}=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=\frac{2}{5}\end{cases}}}\)
b, \(7\left(y-1\right)+2y\left(y-1\right)=0\)
\(\Rightarrow\left(y-1\right)\left(7+2y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y-1=0\\7+2y=0\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\2y=7\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\y=\frac{7}{2}\end{cases}}\)
B3: \(K=\frac{-2}{3}+\frac{3}{4}-\frac{-1}{6}+\frac{-2}{5}\)
\(K=\left(-\frac{2}{3}+\frac{1}{6}\right)+\left(\frac{3}{4}-\frac{2}{5}\right)\)
\(K=\left(\frac{-4}{6}+\frac{1}{6}\right)+\left(\frac{15}{20}-\frac{8}{20}\right)\)
\(K=\frac{-1}{2}+\frac{7}{20}=\frac{-10}{20}+\frac{7}{20}=\frac{-3}{20}\)
Ta có : \(\left(3x-\frac{y}{5}\right)^2\ge0;\left(2y+\frac{3}{7}\right)^2\ge0\)
\(=>\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2\ge0\)
Mà \(\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)nên dấu "=" xảy ra
\(< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\2y+\frac{3}{7}=0\end{cases}}< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\y=-\frac{3}{14}\end{cases}}\)
\(< =>\hept{\begin{cases}x=-\frac{1}{70}\\y=-\frac{3}{14}\end{cases}}\)
Ta có : \(\left(x+y-\frac{1}{4}\right)^2\ge0;\left(x-y+\frac{1}{5}\right)^2\ge0\)
Cộng theo vế ta được : \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2\ge0\)
Mà \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2=0\)nên dấu "=" xảy ra
\(< =>\hept{\begin{cases}y+x=\frac{1}{4}\\y-x=\frac{1}{5}\end{cases}}< =>\hept{\begin{cases}y=\frac{9}{40}\\x=\frac{1}{40}\end{cases}}\)
Rút gọn A trước khi tính :
\(A=\left(\frac{7}{2}x^4y^3-\frac{1}{3}x^4y^3\right)+\left(8x^2y^5-5x^2y^5\right)-\left(6y+\frac{1}{2}y\right)\)
\(=\frac{19}{6}x^4y^3+3x^2y^5-\frac{13}{2}y\)
Thay \(x=-2,y=\frac{3}{4}\) vào A có :
\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{13}{2}\cdot\frac{3}{4}\)
\(=\frac{171}{8}+\frac{729}{8192}-\frac{39}{8}\approx16,6\)
:)) Số xấu ....
Xét biểu thức A, ta suy ra:
\(A=\frac{19}{6}x^4y^3+3x^2y^5-\frac{-13}{2}y\)
Tại x=-2 và y=3/4 thì:
\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{-13}{2}\cdot\frac{3}{4}\)
(phần này bạn tự tính)
\(\)
a/ \(x^2+y^2=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Rightarrow A=0\)
b/ Do \(x=19\Rightarrow20=x+1\)
\(B=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+20\)
\(B=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+20\)
\(B=20-x=20-19=1\)
c/ \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
\(C=\frac{\left(x+y\right)}{y}.\frac{\left(y+z\right)}{z}.\frac{\left(x+z\right)}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)
\(\frac{8x-2y+1}{24y}=\frac{8x-2}{3}=\frac{3-2y}{5}=\frac{8x-2+3-2x}{3+5}=\frac{8x-2y+1}{8}\)
Suy ra \(24y=8\Leftrightarrow y=\frac{1}{3}\).
Với \(y=\frac{1}{3}\): \(\frac{8x-2}{3}=\frac{3-2.\frac{1}{3}}{5}=\frac{\frac{7}{3}}{5}=\frac{7}{15}\Leftrightarrow x=\frac{17}{40}\).
À này!Bạn biết kết bạn không?Chỉ tui với.