Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
a) x2 + 45 = y
Do x2 + 45 > 2 => y nguyên tố > 2 => y lẻ
=> x2 chẵn => x chẵn
Mà 2 là số nguyên tố chẵn duy nhất => x = 2
=> y = 22 + 45 = 49, ko là số nguyên tố, hình như là y2 mới đúng bn ạ
b) 2x = y + y + 1
=> 2x = 2y + 1
Do 2y + 1 là số lẻ => 2x lẻ => x = 0, không là số nguyên tố
Cả 2 câu sao đều vô lí z bn
1) 134xy chia hết cho 5
=>y=0 hoặc y=5
+)Nếu y=0
=>134xy=134x0
Để 134x0 chia hết cho 9 thì 1+ 3 + 4 + x + 0 = 8 + x chia hết cho 9
=>x=1
+)Nếu y=5
=>134xy=134x5
Để 134x5 chia hết cho 9 thì 1 + 3 + 4 + x + 5 = 13 chia hết cho 9
=>x = 5
Vậy y = 0 thì x = 1 hoặc y = 5 thì x = 5
2) 1x8y2 chia hết cho 4 và 9
1x8y2 chia hết cho 4 <=>y2 chia hết cho 4 <=>y={1;5;9}
y=1=>1x812 chia hết cho 9<=>(1+x+8+1+2) chia hết cho 9
<=>12+x chia hết cho 9 <=>x=6
y=5=>1x852 chia hết cho 9<=>(1+x+8+5+2) chia hết cho 9
<=>16+x chia hết cho 9 <=>x=2
y=9=>1x892 chia hết cho 9<=>(1+x+8+9+2) chia hết cho 9
<=>20+x chia hết cho 9 <=>x=7
a, Ta có : \(14⋮2x-3\)
\(\Rightarrow2x-3\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Vì \(2x-3\)là số lẻ
\(\Rightarrow2x-3\in\left\{\pm1;\pm7\right\}\)
... (tự làm)
\(b,\left(x-3\right)\left(y+2\right)=-7\)
\(x+3\)và \(y+2\)là số nguyên
\(\Rightarrow x+3,y+2\inƯ\left(-7\right)=\left\{\pm1;\pm7;\right\}\)
...
\(c,x\left(y-1\right)=9\)
\(x\)và \(y-1\)là số lẻ
\(\Rightarrow x,y-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
...