![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, (x-1)3=8
(x-1)3=23 hoac (x-1)3 =(-2)3
x-1=2 x-1= -2
x=3 x= -1
Vay x=3 hoac x= -1
a ) \(\left(x-1\right)^3=8\)
\(\Leftrightarrow\left(x-1\right)=\sqrt[3]{8}\)
\(\Leftrightarrow\left(x-1\right)=2\)
\(\Leftrightarrow x=3\)
Vậy \(x=3\) .
c
![](https://rs.olm.vn/images/avt/0.png?1311)
I don't now
or no I don't
..................
sorry
a)\(x+12x+x+12x+1=0,5x+2x+30,5x+2x+3\)
\(\Leftrightarrow26x+1=35x+3\)
\(\Leftrightarrow26x+1-\left(35x+3\right)=0\)
\(\Leftrightarrow26x+1-35x-3=0\)
\(\Leftrightarrow-9x+\left(-2\right)=0\)
\(\Leftrightarrow-9x=2\)
\(\Leftrightarrow x=-\frac{2}{9}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án:
Giải thích các bước giải:
2x+5x+7x=35-32
(2+5+7) . x = 3
14 . x = 3
x = 3 : 14
x = 0,2 dư 2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x\ne-\frac{7}{5};x\ne-\frac{1}{5}\)
Đề \(\Leftrightarrow\left(7x+2\right)\left(5x+1\right)=\left(7x-1\right)\left(5x+7\right)\)
\(\Leftrightarrow35x^2+7x+10x+2=35x^2+49x-5x-7\)
\(\Leftrightarrow17x-44x=-2-7\)
\(\Rightarrow-27x=-9\Rightarrow x=\frac{1}{3}\) (thỏa)
Vậy x = 1/3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left|7x+1\right|-\left|5x+6\right|=0\) <=> \(\left|7x+1\right|=\left|5x+6\right|\)
<=> \(\orbr{\begin{cases}7x+1=5x+6\\7x+1=-5x-6\end{cases}}\) <=> \(\orbr{\begin{cases}2x=5\\12x=-7\end{cases}}\) <=> \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(\frac{x+2}{5}=\frac{3x-2}{2}\)
=> 2(x + 2) = 5(3x - 2)
=> 2x + 4 = 15x - 10
=> 2x - 15x = -10 - 4
=> -13x = -14
=> x = 13/4
Bài 1: \(\frac{x+2}{5}=\frac{3x-2}{2}\)
<=> 2x+4=15x-10
<=> 2x-15x=-10-4
<=> -13x=-14
<=> x=\(\frac{14}{13}\)
Bài 2: xy+2x+y=0
<=> (xy+2x)+(y+2)=2
<=> x(y+2)+(y+2)=2
<=> (y+2)(x+1)=2
Vì x,y nguyên => y+2; x+1 nguyên => y+2; x+1 nguyên
=> y+2; x+1 \(\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
ta có bảng
x+1 | -2 | -1 | 1 | 2 |
x | -3 | -2 | 0 | 1 |
y+2 | -1 | -2 | 2 | 1 |
y | -3 | -4 | 0 | -1 |
\(|9-7x|=5x-3\)
\(\Rightarrow9-7x=5x-3\)
\(\Rightarrow9+3=7x+5x\)
\(\Rightarrow12=x\left(5+7\right)\)
\(\Rightarrow12=12x\)
\(\Rightarrow x=12\div12\)
\(\Rightarrow x=1\)