\(\left(x^2+4\right)\left(y^2+9\right)=24xy\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

Giải

\(\left(x^2+4\right)\left(y^2+9\right)=24xy\)

\(\left(x^2+4\right)\left(y^2+9\right)-24xy=0\)

\(x^2\left(y^2+9\right)+4\left(y^2+9\right)-24xy=0\)

\(x^2y^2+9x^2+4y^2+36-24xy=0\)

\(x^2y^2+9x^2+4y^2+36-12xy-12xy=0\)(Tách -24xy thành -12xy - 12xy)

\(\left(9x^2-12xy+4y^2\right)+\left(x^2y^2-12xy+36\right)=0\)(Đổi chỗ)

\(\left[\left(3x\right)^2-2.3x.2y+\left(2y\right)^2\right]+\left[\left(xy\right)^2-2.xy.6+6^2\right]=0\)(Biến đổi thế này để có hằng đẳng thức đấy)

\(\left(3x-2y\right)^2+\left(xy-6\right)^2=0\)(Cả hai hạng tử ta đều sử dụng hằng đẳng thức \(A^2-2AB+B^2=\left(A-B\right)^2\))

Ta luôn có \(\left(3x-2y\right)^2\ge0\)và \(\left(xy-6\right)^2\ge0\)

Do đó \(\left(3x-2y\right)^2+\left(xy-6\right)^2\ge0\).Dấu "=" xảy ra khi và chỉ khi \(\left(3x-2y\right)^2=0\)và \(\left(xy-6\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}3x=2y\\xy=6\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\xy=6\end{cases}}\Rightarrow\hept{\begin{cases}\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=\frac{xy}{2.3}\\xy=6\end{cases}}}\)

\(\Rightarrow\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=\frac{6}{6}=1\Rightarrow\hept{\begin{cases}\left(\frac{x}{2}\right)^2=1\\\left(\frac{y}{3}\right)^2=1\end{cases}}\)

Vì \(x,y>0\)(đề cho) nên \(\hept{\begin{cases}\frac{x}{2}>0\\\frac{y}{3}>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{3}=1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy phương trình có cặp nghiệm (x; y) là (2; 3)

Không hiểu thì hỏi nha

20 tháng 6 2021

Ta có A = 2018.2020 + 2019.2021

= (2020 - 2).2020 + 2019.(2019 + 2) 

= 20202 - 2.2020 + 20192 + 2.2019

= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B

=> A = B

b) Ta có B = 964 - 1= (932)2 - 12 

= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1) 

  (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80 

mà A =   (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10

=> A < B

20 tháng 6 2021

c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)

=> A < B

d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)

=> A < B

Bài 2:a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) \(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) \(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) \(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) \(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) Có: \(\left|y+3\right|\ge0\) \(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) Do...
Đọc tiếp

Bài 2:

a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) 

\(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) 

\(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) 

\(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) 

\(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) 

Có: \(\left|y+3\right|\ge0\) 

\(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) 

Do đó: \(\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]=0\) 

\(\Leftrightarrow\hept{\begin{cases}y+3=0\\x+y=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\) 

b. \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\) 

\(\Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+\left[2\left(x^2-5x-2012\right)\right]^2=0\) 

\(\Leftrightarrow\left(2x^2+x-2013-2x^2+10x+4024\right)^2=0\) 

\(\Leftrightarrow\left(11x+2011\right)^2=0\) 

\(\Leftrightarrow11x+2011=0\) 

\(\Leftrightarrow x=-\frac{2011}{11}\) 

0
21 tháng 4 2017

undefinedundefined

22 tháng 4 2017

cop mạng à

22 tháng 9 2019

CÁI NÀY mk lm rồi

22 tháng 9 2019

x^2+2xy+y^2=10

x^2+y^2=10-2xy

2 tháng 11 2019

Ai hack nick mình thì trả lại đi !!!

nick : 

  • Tên: Vô danh
  • Đang học tại: Trường Tiểu học Số 1 Nà Nhạn
  • Địa chỉ: Huyện Điện Biên - Điện Biên
  • Điểm hỏi đáp: 112SP, 0GP
  • Điểm hỏi đáp tuần này: 47SP, 0GP
  • Thống kê hỏi đáp

​​Ai hack hộ mình rồi gửi cho mình nhé mình cảm ơn 

Ai là bạn của mình chắn chắn biết nên vào phần bạn bè hỏi mình mới là chủ nick 

Mong olm xem xét ko cho ai hack nick nhau nữa ạ! Xin chân thành cảm ơn !

LInk : https://olm.vn/thanhvien/lehoangngantoanhoc

10 tháng 9 2018

bạn vào loigiaihay rồi chọn toán lớp 8 rồi chọn đẳng thức đáng nhớ

10 tháng 9 2018

dễ mà áp dụng hết hằng đẳng thức nếu bạn thuộc hằng đẳng thức mik chỉ làm mỗi bài 1 ý nha xong dựa vô mà làm

\(1a.\left(2x+3y\right)^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2\)

                                   \(=4y^2+12xy+9y^2\)

\(2a.x^2-6x+9\)

\(=x^2-2.x.3+3^2\)

\(=\left(x-3\right)^2\)

đăng lên làm j z