\(x\left(x+6\right)-7x-42=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}}\)

1 tháng 10 2020

a) (2x - 3)2 = (x + 5)2

=> 4x2 - 12x + 9 = x2 + 10x + 25

=> 4x2 - 12x + 9 - (x2 + 10x + 25) = 0

=> 3x2 - 22x - 16 = 0

=> 3x2 - 24x + 2x - 16 = 0

=> 3x(x - 8) + 2(x - 8) = 0

=> (3x + 2)(x - 8) = 0

=> \(\orbr{\begin{cases}3x+2=0\\x-8=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=8\end{cases}}\)

b) x2(x - 1) - 4x2 + 8x - 4 = 0

=> x2(x - 1) - (2x  - 2)2 = 0

=> x2(x - 1) - [2(x- 1)]2 = 0

=> x2(x - 1) - 4(x - 1)2 = 0

=> (x - 1)(x2 - 4(x - 1) = 0

=> (x - 1)(x2 - 4x + 4) = 0

=> (x - 1)(x - 2)2 = 0

=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

c) x2 + 7x + 12 = 0

=> x2 + 3x + 4x + 12 = 0

=> x(x + 3) + 4(x + 3) = 0

=> (x + 4)(x + 3) = 0

=> \(\orbr{\begin{cases}x+4=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=-3\end{cases}}\)

d) x2 + 3x - 18 = 0

=> x2 + 6x - 3x - 18 = 0

=> x(x + 6) - 3(x + 6) = 0

=> (x - 3)(x + 6) = 0

=> \(\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)

e) x(x + 6) - 7x - 42 = 0

=> x(x + 6) - 7(x + 6) = 0

=> (x - 7)(x + 6) = 0

=> \(\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)

1 tháng 10 2020

1. ( 2x - 3 )2 = ( x + 5 )2

<=> ( 2x - 3 )2 - ( x + 5 )2 = 0

<=> [ ( 2x - 3 ) - ( x + 5 ) ][ ( 2x - 3 ) + ( x + 5 ) ] = 0

<=> ( 2x - 3 - x - 5 )( 2x - 3 + x + 5 ) = 0

<=> ( x - 8 )( 3x + 2 ) = 0

<=> \(\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}\)

2. x2( x - 1 ) - 4x2 + 8x - 4 = 0

<=> x2( x - 1 ) - ( 4x2 - 8x + 4 ) = 0

<=> x2( x - 1 ) - 4( x2 - 2x + 1 ) = 0

<=> x2( x - 1 ) - 4( x - 1 )2 = 0

<=> ( x - 1 )[ x2 - 4( x - 1 ) ] = 0

<=> ( x - 1 )( x2 - 4x + 4 ) = 0

<=> ( x - 1 )( x - 2 )2 = 0

<=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

3. x2 + 7x + 12 = 0

<=> x2 + 3x + 4x + 12 = 0

<=> x( x + 3 ) + 4( x + 3 ) = 0

<=> ( x + 3 )( x + 4 ) = 0

<=> \(\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\)

4. x2 + 3x - 18 = 0

<=> x2 - 3x + 6x - 18 = 0

<=> x( x - 3 ) + 6( x - 3 ) = 0

<=> ( x - 3 )( x + 6 ) = 0

<=> \(\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)

5. x( x + 6 ) - 7x - 42 = 0

<=> x( x + 6 ) - 7( x + 6 ) = 0

<=> ( x + 6 )( x - 7 ) = 0

<=> \(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}\)

3 tháng 1 2020

a. x(x-5)-4x+20=0

\(\Leftrightarrow\)x(x-5)-4(x-5)=0

\(\Leftrightarrow\)(x-4)(x-5)=0

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}}\)

b, x(x+6)-7x-42=0

\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\\ \Leftrightarrow\left(x-7\right)\left(x+6\right)=0\\ \Leftrightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}}\)

3, x^3-5x^2+x-5=0

\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x-5\right)=0\\ \Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}}\)

\(\Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)

23 tháng 6 2017

\(\left(x+1\right)^2=x+1\)

\(\left(x+1\right)^2-\left(x+1\right)=0\)

\(\left(x+1\right)\left(x+1-1\right)=0\)

\(\left(x+1\right)x=0\)

\(\orbr{\begin{cases}x+1=0\\x=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)vậy.....

\(x\left(x-5\right)^2-4x+20=0\)

\(x\left(x-5\right)^2-4\left(x-5\right)=0\)

\(\left(x-5\right)\left[x\left(x-5\right)-4\right]=0\)

\(\left(x-5\right)\left(x^2-5x-4\right)=0\)

\(\orbr{\begin{cases}x-5=0\\x^2-5x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-0,7015621187\end{cases}}}\)vậy.........

\(x\left(x+6\right)-7x-42=0\)
\(x\left(x+6\right)-7\left(x+6\right)=0\)

\(\left(x+6\right)\left(x-7\right)=0\)

\(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}}\) vậy....

\(x^3-5x^2+x-5=0\)

\(x^2\left(x-5\right)+\left(x-5\right)=0\)

\(\left(x-5\right)\left(x^2+1\right)=0\)

\(\orbr{\begin{cases}x-5=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x^2=-1\Rightarrow x\in\Phi\end{cases}}}\)vậy........

\(x^4-2x^3+10x^2-20x=0\)

\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\left(x-2\right)\left(x^3+10x\right)=0\)

\(\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)vậy..............

nhớ chọn mk nha

8 tháng 10 2017

a, \(x\left(x-5\right)-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-\left(4x-20\right)=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

Vậy \(x\in\left(5;4\right)\)

b ,\(x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow x\left(x+6\right)-\left(7x+42\right)=0\)

\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+6=0\\x-7=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

Vậy \(x\in\left(-6;7\right)\)

8 tháng 10 2017

a, \(x\left(x-5\right)-4x+20=0\)

\(\Rightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Rightarrow x=5;x=4\)

b, \(x\left(x+6\right)-7x-42=0\)

\(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Rightarrow x=-6;x=7\)

4 tháng 3 2020

(x2 + x  + 1)(6 - 2x) = 0

<=> 6 - 2x = 0 (do x2 + x + 1 > 0)

<=> 2x = 6

<=> x = 3

Vậy S = {3}

(8x - 4)(x2 + 2x + 2) = 0

<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)

<=> 8x = 4

<=> x = 1/2 

Vậy S  = {1/2}

x3 - 7x + 6 = 0

<=> x3 - x - 6x + 6 = 0

<=> x(x2 - 1) - 6(x - 1) = 0

<=> x(x - 1)(x + 1) - 6(x - 1) = 0

<=> (x2 + x - 6)(x - 1) = 0

<=> (x2 + 3x - 2x - 6)(x - 1) = 0

<=> (x + 3)(x - 2)(x - 1) = 0

<=> x + 3 = 0

hoặc x - 2 = 0

hoặc x  - 1 = 0

<=> x = -3

hoặc x = 2

hoặc x = 1

Vậy S = {-3; 1; 2}

x5 - 5x3 + 4x = 0

<=> x(x4 - 5x2 + 4) = 0

<=> x(x4 - x2 - 4x2 + 4) = 0

<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0

<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0

<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x  + 1 = 0

<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1

Vậy S = {-2; -1; 0; 1; 2}

4 tháng 3 2020

+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

 - Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

  \(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)

Vậy \(S=\left\{3\right\}\)

+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

 - Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)

 - Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

   \(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

+ Ta có: \(x^3-7x+6=0\)

       \(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)

       \(\Leftrightarrow x^2.\left(x-1\right)+x.\left(x-1\right)-6.\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\) 

       \(\Leftrightarrow\left(x-1\right).\left[x.\left(x-2\right)+3.\left(x-2\right)\right]=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)

       \(\Leftrightarrow x=1\left(TM\right)\)hoặc \(x=2\left(TM\right)\)hoặc \(x=-3\left(TM\right)\)

 Vậy \(S=\left\{-3;1;2\right\}\)

 + Ta có: \(x^5-5x^3+4x=0\)

        \(\Leftrightarrow x.\left(x^4-5x^2+4\right)=0\)

       \(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)

       \(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)

       \(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)

       \(\Leftrightarrow x=0\left(TM\right)\)

hoặc  \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)

hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)

Vậy \(S=\left\{-2;-1;0;1;2\right\}\)

!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!      

26 tháng 6 2018

a) Qui đồng rồi khử mẫu ta được:

   3(3x+2)-(3x+1)=2x.6+5.2

<=> 9x+6-3x-1 = 12x+10

<=> 9x-3x-12x  = 10-6+1

<=> -6x            = 5

<=> x               = -5/6

Vậy ....

b) ĐKXĐ: \(x\ne\pm2\)

Qui đồng rồi khử mẫu ta được:

   (x+1)(x+2)+(x-1)(x-2) = 2(x2+2)

<=> x2+3x+2+x2-3x+2 = 2x2+4

<=> x2+x2-2x2+3x-3x = 4-2-2

<=> 0x             = 0

<=> x vô số nghiệm

Vậy x vô số nghiệm với x khác 2 và x khác -2

c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)

\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)

Vậy ...... 

d) (x+1)2-4(x2-2x+1) = 0

<=> x2+2x+1-4x2+8x-4 = 0

<=> -3x2+10x-3 = 0

giải phương trình

17 tháng 7 2018

Lần sau đăng thì chia thành nhiều câu hỏi nhé

\(16^2-9.\left(x+1\right)^2=0\)

\(16^2-\text{ }\left[3.\left(x+1\right)\right]^2=0\)

\(\left[16-3.\left(x+1\right)\right].\left[16+3\left(x+1\right)\right]=0\)

\(\left[16-3x-3\right]\left[16+3x+3\right]=0\)

\(\left[13-3x\right].\left[19+3x\right]=0\)

\(\Rightarrow\orbr{\begin{cases}13-3x=0\\19+3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=13\\3x=-19\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{13}{3}\\x=-\frac{19}{3}\end{cases}}}\)

KL:..............................

25 tháng 7 2018

Nhiều câu hỏi mà bn ??