Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4 chia hết cho x
=> x \(\in\) Ư(4) = {1;-1;2;-2;4;-4}
Vậy x \(\in\) {1;-1;2;-2;4;-4}
b) 6 chia hết x+1
=> x+1 \(\in\) Ư(6) = {-1;1;2;-2;3;-3;6;-6}
Vậy x \(\in\) {-2;0;1;-3;2;-4;5;-7}
c) 12 chia hết cho x và 16 chia hết cho x
=> x \(\in\) ƯC(12;16) = {1;2;4}
Vậy x \(\in\) {1;2;4}
d) x chia hết cho 6 và x chia hết cho 4
=> x \(\in\) BC(6;4) = {0;12;24;48;...}
Mà 12<x<40 => x = 24
e) x+5 chia hết cho x+1
=> x+1+4 chia hết cho x+1
=> 4 chia hết cho x+1
=> x+1 \(\in\) Ư(4) = {1;-1;2;-2;4;-4}
Vậy x \(\in\) {0;-2;1;-3;3;-5}
b) \(6⋮x+1\)
\(\Rightarrow x+1\inƯ\left(6\right)\)
hay \(x+1\in\left\{1,2,3,6\right\}\)
Vậy \(x\in\left\{0,1,2,5\right\}\)
Bài 1:
\(c.\) \(2x+1⋮x-1\)
\(\Leftrightarrow\left(2x-2\right)+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
Ta có bẳng sau:
\(x-1\) | \(-1\) | \(1\) | \(3\) | \(-3\) |
\(x\) | \(0\) | \(2\) | \(4\) | \(-2\) |
x + 4 chia hết cho x
4 chia hết cho x
x thuộc U(4) = {-4;-2;-1;1;2;4}
3x+ 7 chia hết cho x
7 chia hết cho x
x thuộc U(7) = {-7;-1;1;7}
8 + 6 chia hết cho x + 1
14 chia hết cho x + 1
x + 1 thuộc U(14) = {-14;-7;-2;-1;1;2;7;14}
Vậy x thuộc {-15 ; -8 ; -3 ; -2 ; 0 ; 1 ; 6 ; 13}
x + 4 chia hết cho x
4 chia hết cho x
x thuộc U(4) = {-4;-2;-1;1;2;4}
3x+ 7 chia hết cho x
7 chia hết cho x
x thuộc U(7) = {-7;-1;1;7}
8 + 6 chia hết cho x + 1
14 chia hết cho x + 1
x + 1 thuộc U(14) = {-14;-7;-2;-1;1;2;7;14}
Vậy x thuộc {-15 ; -8 ; -3 ; -2 ; 0 ; 1 ; 6 ; 13}
a, \(x\) + 6 ⋮ \(x\) đkxđ \(x\) \(\ne\) 0
⇔ 6 ⋮ \(x\)
\(x\) \(\in\) {1; 2; 3; 6}
b, \(x\) + 9 \(⋮\) \(x\) + 1 đkxđ \(x\) \(\ne\) -1
\(x\) + 1 + 8 ⋮ \(x\) + 1
8 \(⋮\) \(x\) + 1
\(x\) + 1 \(\in\) Ư(8) = { 1; 2; 4; 8}
\(x\) \(\in\) { 0; 1; 3; 7}
c, 2\(x\) + 1 ⋮ \(x\) - 1 đkxđ \(x\) \(\ne\) 1
2\(x\) - 2 + 3 ⋮ \(x\) -1
2.(\(x\) - 1) + 3 \(⋮\) \(x\) - 1
\(x\) - 1 \(\in\)Ư(3) = { 1; 3}
\(x\) \(\in\) { 2; 4}
a) Xem lại đề!
b) Ta có:
x + 9 = x + 1 + 8
Để (x + 9) ⋮ (x + 1) thì 8 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
⇒ x ∈ {-9; -5; -3; -2; 0; 1; 3; 7}
Mà x ∈ ℕ
⇒ x ∈ {0; 1; 3; 7}
c) Ta có:
2x + 1 = 2x - 2 + 3 = 2(x - 1) + 3
Để (2x + 1) ⋮ (x - 1) thì 3 ⋮ (x - 1)
⇒ x - 1 ∈ Ư{3} = {-3; -1; 1; 3}
⇒ x ∈ {-2; 0; 2; 4}
Mà x ∈ ℕ
⇒ x ∈ {0; 2; 4}
\(x+6⋮x-1\)
Ta có: \(x-1+7\)
Mà: \(x-1⋮x-1\)
=> \(7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Th1: \(x-1=1\Rightarrow x=2\)
Th2: \(x-1=-1\Rightarrow x=0\)
Th3: \(x-1=7\Rightarrow x=8\)
Th4: \(x-1=-7\Rightarrow x=-6\)
Vậy: \(x\in\left\{2;0;8;6\right\}\) thì \(x+6⋮x-1\)
\(x+6\)⋮\(x-1\)
\(x-1+7\) ⋮ \(x-1\)
7⋮ \(x-1\)
Ư(7) = {-7; -1; 1; 7}
Lập bảng ta có:
Theo bảng trên ta có:
Các giá trị của \(x\) thỏa mãn đề bài lần lượt là: -6; 0; 2; 8
Vậy \(x\) \(\in\) {-6; 0; 2; 8}