K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2022

\(x^3-x^2-x^2+x=0\Leftrightarrow x^3-2x^2+x=0\)

\(\Leftrightarrow x\left(x^2-2x+1\right)=0\Leftrightarrow x\left(x-1\right)^2=0\Leftrightarrow x=0;x=1\)

7 tháng 11 2021

e) \(\left(9x^2-49\right)+\left(3x+7\right)\left(7x+3\right)=0\)

\(\Rightarrow\text{[}\left(3x\right)^2-7^2\text{]}+\left(3x+7\right)\left(7x+3\right)=0\)

\(\Rightarrow\left(3x-7\right)\left(3x+7\right)+\left(3x+7\right)\left(7x+3\right)=0\)

\(\Rightarrow\left(3x+7\right)\text{[}\left(3x-7\right)+\left(7x+3\right)\text{]}=0\)

\(\Rightarrow\left(3x+7\right)\left(3x-7+7x+3\right)=0\)

\(\Rightarrow\left(3x+7\right)\left(10x-4\right)=0\)

=> 2 TH

*3x+7=0               *10x-4=0

=>3x=-7               =>10x=4

=>x=-7/3              =>x=4/10=2/5

vậy x=-7/3 hoặc x=2/5

g) \(\left(x-4\right)^2=\left(2x-1\right)^2\)

\(\Rightarrow\left(x-4\right)^2-\left(2x-1\right)^2=0\)

\(\Rightarrow\left(x-4-2x+1\right)\left(x-4+2x-1\right)=0\)

\(\Rightarrow\left(-x-3\right)\left(3x-5\right)=0\)

\(\Rightarrow-\left(x+3\right)\left(3x-5\right)=0\)

=> 2 TH

*-(x+3)=0          *3x-5=0

=>-x=-3            =>3x=5  

=x=3                =>x=5/3

h)\(x^2-x^2+x-1=0\)

\(\Rightarrow0+x-1=0\)

\(\Rightarrow x-1=0\)

=>x=0+1

=>x=1

vậy x=1

k, x(x+ 16) - 7x - 42 = 0

=>x^2+16x-7x-42=0

=>x^2+9x-42=0

vì x^2>0

do đó x^2+9x-42>0

nên o có gt nào của x t/m y/cầu đề bài

m)x^2+7x+12=0

=>x^2+3x++4x+12=0

=>x(x+3)+4(x+3)=0

=>(x+4).(x+3)=0

=>2 TH

=> *x+4=0

=>x=-4

vậy x=-4

*x+3=0

=>x=-3

vậy x=-3

n)x^2-7x+12=0

=>x^2-4x-3x+12=0

=>x(x-4)-3(x-4)=0

=>(x-3).(x-4)=0

=>2 TH

*x-3=0=>x=0+3=>x=3

*x-4=0=>x=0+4=>x=4

vậy x=3 hoặc x=4

7 tháng 11 2021

a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1

b)(x+1)(x+2)(x+5)−x2(x+8)=27⇔x2+2x+x+2(x+5)−x3−8x2=27⇔x2(x+5)+2x(x+5)+x(x+5)+2(x+5)−x3−8x2=27⇔x3+5x2+2x2+10x+x2+5x+2x+10−x3−8x2=27⇔17x+10=27⇔17x=17⇒x=1

11 tháng 6 2018

Bài 1:

Đặt biểu thức trên là A

Ta có:\(A=\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-3\right)=x^2-x-2-\left(x^2-x-6\right)\)

                                                                                      \(=x^2-x-2-x^2+x+6=4\)

Vậy biểu thức A không phụ thuộc vào biến x (đpcm)

Bài 2:

a)\(\left(x-5\right)\left(x+2\right)+\left(x+1\right)\left(2-x\right)=15\)

\(\Leftrightarrow x^2-3x-10+x-x^2+2=15\)

\(\Leftrightarrow-2x-8=15\)

\(\Leftrightarrow-2x=23\)\(\Leftrightarrow x=\frac{-23}{2}\)

Vậy...................................................................................

câu b) tương tự câu a) thôi,bạn tự làm đi nhé

11 tháng 3 2020

ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)

\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)

Đề sai à ??

30 tháng 9 2018

     \(x^3-2x^2-x+2=0\)

\(\Rightarrow x^2\left(x-2\right)-\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2-1\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\)

Tìm được \(x\in\left\{2;1;-1\right\}\)

    \(\left(x^2+x\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)=0\)(1)

Mà \(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\) (2)

Từ (1) và (2) \(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

6 tháng 7 2017

a) \(25x^2-9=0\)

\(\Leftrightarrow\left(5x\right)^2-3^2=0\)

\(\Leftrightarrow\left(5x+3\right)\left(5x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x+3=0\\5x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{5}\\x=\frac{3}{5}\end{cases}}\)

b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Leftrightarrow x^2+8x+16-x^2+1=16\)

\(\Leftrightarrow8x+17=16\)

\(\Leftrightarrow8x=-1\)

\(\Leftrightarrow x=-\frac{1}{8}\)

6 tháng 7 2017

a) ko hiểu đề bài

b) Ta có (x + 4)2 - (x + 1)(x - 1) = 16

<=> x2 + 8x + 16 - (x2 - 1) = 16

<=>  x2 + 8x + 16 - x2 + 1 = 16

<=> 8x + 17 = 16

=> 8x = -1

=> x = \(-\frac{1}{8}\)

17 tháng 7 2018

Lần sau đăng thì chia thành nhiều câu hỏi nhé

\(16^2-9.\left(x+1\right)^2=0\)

\(16^2-\text{ }\left[3.\left(x+1\right)\right]^2=0\)

\(\left[16-3.\left(x+1\right)\right].\left[16+3\left(x+1\right)\right]=0\)

\(\left[16-3x-3\right]\left[16+3x+3\right]=0\)

\(\left[13-3x\right].\left[19+3x\right]=0\)

\(\Rightarrow\orbr{\begin{cases}13-3x=0\\19+3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=13\\3x=-19\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{13}{3}\\x=-\frac{19}{3}\end{cases}}}\)

KL:..............................

25 tháng 7 2018

Nhiều câu hỏi mà bn ??

19 tháng 2 2019

a) \(-ĐKXĐ:x\ne\pm2;1\)

Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)

\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)

b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)

\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)

Vậy với mọi x thỏa mãn x>1 thì A > 0

c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy x = -1;-2

3 tháng 4 2021

a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)

\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)

\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)

b, Ta có : \(\left(x+5\right)^2-9x-45=0\)

\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)

TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)

c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)

\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x - 21-13-3
x315-1
3 tháng 4 2021

d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)

\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )

e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)

TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )

TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)

7 tháng 7 2018

\(\Rightarrow25\left(x+1\right)^4-26\left(x+1\right)^2+1=0\Leftrightarrow25\left(x+1\right)^4-25\left(x+1\right)^2-\left(\left(x+1\right)^2-1\right)=0\)

\(\Leftrightarrow25\left(x+1\right)^2.\left(\left(x+1\right)^2-1\right)-\left(\left(x+1\right)^2-1\right)=0\)

\(\Leftrightarrow\left(\left(x+1\right)^2-1\right).\left(25\left(x+1\right)^2-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)^2-1=0\\25\left(x+1\right)^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,-2\\x=-\frac{4}{5},-\frac{6}{5}\end{cases}}}\)

7 tháng 7 2018

\(x^2+x-1=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\frac{5}{4}=0\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{\sqrt{5}}{2}\\x+\frac{1}{2}=\frac{-\sqrt{5}}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}-1}{2}\\x=\frac{-\sqrt{5}-1}{2}\end{cases}}}\)