Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+9x^2=0\)
\(\Leftrightarrow x^2\left(x^2+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2+9=0\end{cases}}\)
\(\Leftrightarrow x^2=0\Rightarrow x=0\) vì \(x^2+9\ge9>0\forall x\)
=.= hk tốt!!
#)Giải :
\(x^4+9x^2=0\left(1\right)\)
\(\Leftrightarrow x^2\left(x^2+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2+9=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+9=0\left(2\right)\end{cases}}\)
Có \(x^2\ge0\forall x\)
Mâu thuẫn với (2)
=> (2) vô nghiệm
Vậy .........
P/s Nguồn : Giải phương trình x^4 + 9x^2=0 - Thu Hang - H7https://h7.net/hoi-dap/toan-9/giai-phuong-trinh-x-4-9x-2-0-faq299413.html
Ta có \(A=9x^2+9y^2+25z^2\)
\(=5\left(x^2+y^2\right)+\left(4x^2+25z^2\right)+\left(4y^2+25z^2\right)\)
\(\ge5.2\sqrt{x^2y^2}+2\sqrt{4x^2.25z^2}+2\sqrt{4y^2.25z^2}\)
\(=10xy+20xz+20yz\)
\(=10\left(xy+2xz+2yz\right)=10.65=650\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\4x^2=25z^2\\4y^2=25z^2\end{cases}}\) và \(xy+2xz+2yz=65\)
\(\Leftrightarrow\) \(\hept{\begin{cases}x=y=5\\z=2\end{cases}}\)
Bước 1: Tìm \(\Delta\)và rút gọn
Bước 2: Để pt .. <=> \(\Delta\).. 0
Bước 3: Kết luận
Chúc bạn thành công =))))))
a, \(x^2-49x-50=0\Leftrightarrow\left(x-1\right)\left(x+50\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-50\end{cases}}\)
b, \(3x^2-7x-10=0\Leftrightarrow3x\left(x+1\right)-10\left(x+1\right)=0\Leftrightarrow\left(3x-10\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=10\\x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}}\)
c, \(x^2-4x-5=0\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
d, \(x^2+2x-3=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
e, \(x^2+2020x-2021=0\)
=> vô nghiệm
f, \(x^2+9x-10=0\Leftrightarrow\left(x-1\right)\left(x+10\right)\Leftrightarrow\orbr{\begin{cases}x=1\\x=-10\end{cases}}\)
g, \(-5x^2+4x+1=0\Leftrightarrow5x^2+x-5x-1=0\Leftrightarrow x\left(5x+1\right)-1\left(5x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{5}\end{cases}}\)
h, \(4x^2+3x-7=0\Leftrightarrow x\left(4x+7\right)-1\left(4x+7\right)=0\Leftrightarrow\left(x-1\right)\left(4x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{7}{4}\end{cases}}\)
a) (x-50)(x+1)=0
<=>x=50 hoặc x=1
b) (x+1)(x-10/3)=0
<=>x=-1 hoặc x=10/3
c) (x-5)(x+1)=0
<=>x=5 hoặc x=-1
d) (x+3)(x-1)=0
<=>x=-3 hoặc x=1
e) (x-1)(x+2021)=0
<=>x=1 hoặc x=-2021
f) (x-1)(x+10)=0
<=> x=1 hoặc x=-10
g) (x+1/5)(x-1)=0
<=>x=1 hoặc x=-1/5
h) (x-1)(x+7/4)=0
<=> x=1 hoặc x=-7/4
Học tốt. tk vs ạ
a. Phương trình tương đương với \(\left(x^2-2x-1\right)\left(x^2+2x+3\right)=0\leftrightarrow x=1\pm\sqrt{2}.\)
b. Nhân cả hai vế với 3, phương trình tương đương với \(27-27x+9x^2-x^3=2x^3\leftrightarrow\left(3-x\right)^3=2x^3\leftrightarrow3-x=\sqrt[3]{2}x\leftrightarrow x=\frac{3}{1+\sqrt[3]{2}}\leftrightarrow x=\sqrt[3]{4}-\sqrt[3]{2}+1.\)
Em kiểm tra lại đề bài nhé!
nếu đúng thì đề là \(\left(x^2-x+1\right)^4-10x^2\left(x^2-x+1\right)+9x^4=0\).
a. \(x^4-10x^3+25x^2-36=0\)
=> \(x^3\left(x-3\right)-7x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(x^3-7x^2+4x+12\right)=0\)
=>\(\left(x-3\right)\left[x^2\left(x-2\right)-5x\left(x-2\right)-6\left(x-2\right)\right]=0\)=> \(\left(x-3\right)\left(x-2\right)\left(x^2-5x-6\right)=0\)
=> \(\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x-6\right)=0\)
=>\(\left[\begin{matrix}x=3\\x=2\\x=-1\\x=6\end{matrix}\right.\)
b) \(x^4\) - \(^{9x^2}\) - 24x - 16 = 0
=> \(x^3\left(x-4\right)+4x^2\left(x-4\right)+7x\left(x-4\right)+4\left(x-4\right)=0\)=>\(\left(x-4\right)\left(x^3+4x^2+7x+4\right)=0\)
=> \(\left(x-4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+4\left(x+1\right)\right]=0\)=>\(\left(x-4\right)\left(x+1\right)\left(x^2+3x+4\right)=0\)
=> \(\left(x-4\right)\left(x+1\right)=0\) (vì x^2 + 3x + 4> 0)
=>\(\left[\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
a,pt\(\Leftrightarrow\left(x^4-10x^3+25x\right)-36=0\)\(\Leftrightarrow\left(x^2-5x\right)^2-36=0\)
\(\Leftrightarrow\left(x^2-5x-6\right)\left(x^2-5x+6\right)=0\)\(\Leftrightarrow\left[\begin{matrix}x^2-5x-6=0\\x^2-5x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}\left(x+1\right)\left(x-6\right)=0\\\left(x-2\right)\left(x-3\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-1,x=6\\x=2,x=3\end{matrix}\right.\)
vậy pt có 4 nghiệm x=(-1,6,2,3)
đặt \(t=x^2\left(t>0\right)\)
\(\Rightarrow\)ta có phương trình: \(t^2-t-72=0\)
\(\Delta=\left(-1\right)^2-4.1.\left(-72\right)=289\)
\(t_1=\frac{1+\sqrt{289}}{2}=9\)(nhận)
\(t_2=\frac{1-\sqrt{289}}{2}=-8\)(loại)
Với \(t_1=9\Rightarrow x^2=9\Leftrightarrow x=3,x=-3\)
x4-4x3-9x2+36x = 0
⇔ x (x3 - 4x2 - 9x +36 ) = 0
⇔\(\begin{cases} x = 0 \\ x^3 -4x^2 -9x +36 = 0 (1) \end{cases}\)
(1) ⇔ x3 - 4x2 - 9x +36 = 0
x1 = -3 (Nhận)
x2 = 4 (Nhận)
Vậy S = {0;-3;4}
\(x^2-9x+7=0\)
\(\Rightarrow2x^2-2x-7x+7=0\)
\(\Rightarrow2x\left(x-1\right)+7\left(x-1\right)=0\)
\(\Rightarrow\left(2x+7\right)\left(x-1\right)=0\)
\(\Rightarrow x=-\frac{7}{2}\)
\(\Rightarrow1.x=1\)
P/s: không chắc nha...