Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,9x^2-49=0\)
\(9x^2=49\)
\(x^2=\frac{49}{9}=\frac{7^2}{3^2}=\frac{\left(-7\right)^2}{\left(-3\right)^2}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)
vậy ...
\(c,x^3-16x=0\)
\(x.\left(x^2-16\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4,x=-4\end{cases}}\)
vậy ...
Tìm x
b) 16x - 5x2 - 3 = 0
\(\Leftrightarrow\) 5x2 - 16x + 3 = 0
\(\Leftrightarrow\) 5x2 - 15x - x + 3 = 0
\(\Leftrightarrow\) ( 5x2 - 15x ) - ( x - 3 ) = 0
\(\Leftrightarrow\) 5x ( x - 3 ) - ( x- 3 ) = 0
\(\Leftrightarrow\) ( x - 3 ) ( 5x - 1 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy phương trình có nghiệm x = 3 hoặc x = \(\dfrac{1}{5}\)
\(2x^2-6x=0\)
\(\Rightarrow2x.\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0:2\\x=0+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}.\)
\(2x.\left(x+2\right)-3.\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right).\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0-2\\2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-2;\frac{3}{2}\right\}.\)
\(x^3-16x=0\)
\(\Rightarrow x.\left(x^2-16\right)=0\)
\(\Rightarrow x.\left(x^2-4^2\right)=0\)
\(\Rightarrow x.\left(x-4\right).\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0+4\\x=0-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy \(x\in\left\{0;4;-4\right\}.\)
Chúc bạn học tốt!
Lời giải:
a)
\(x^2-2x=24\)
\(\Leftrightarrow x^2-6x+4x-24=0\)
\(\Leftrightarrow x(x-6)+4(x-6)=0\Leftrightarrow (x+4)(x-6)=0\)
\(\Rightarrow \left[\begin{matrix} x+4=0\\ x-6=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-4\\ x=6\end{matrix}\right.\)
b)
\(x^3-7x+6=0\Leftrightarrow (x^3-x)-(6x-6)=0\)
\(\Leftrightarrow x(x^2-1)-6(x-1)=0\)
\(\Leftrightarrow x(x-1)(x+1)-6(x-1)=0\)
\(\Leftrightarrow (x-1)(x^2+x-6)=0\)
\(\Leftrightarrow (x-1)(x^2-2x+3x-6)=0\)
\(\Leftrightarrow (x-1)[x(x-2)+3(x-2)]=0\)
\(\Leftrightarrow (x-1)(x-2)(x+3)=0\)
\(\Rightarrow \left[\begin{matrix} x-1=0\\ x-2=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=2\\ x=-3\end{matrix}\right.\)
c) Xem lại đề.
d) Đặt \(x^2+x+4=a\) thì pt trở thành:
\(a^2+8ax+16x^2=0\)
\(\Leftrightarrow a^2+2.a.4x+(4x)^2=0\)
\(\Leftrightarrow (a+4x)^2=0\Rightarrow a+4x=0\)
\(\Rightarrow x^2+x+4+4x=0\)
\(\Rightarrow x(x+1)+4(x+1)=0\Leftrightarrow (x+1)(x+4)=0\)
\(\Rightarrow \left[\begin{matrix} x+4=0\rightarrow x=-4\\ x+1=0\rightarrow x=-1\end{matrix}\right.\)
bài 1
a)\(x^2+5x+6=\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}}\)
a/ x4 + 7x2 +6 =0
x4 + 6x2 + x2 + 6 =0
( x4 + 6x2) + ( x2 + 6) =0
x2 ( x2 + 6) +( x2 + 6) =0
( x2 + 6)(x2 +1) =0
không tìm được x vì ( x2 + 6)(x2 +1) > 0 V x\(\varepsilon\)R
b/ 5x6 - 12x3 + 7 = 0
5x6 - 5x3 - 7x3 +7 =0
5x3(x3 - 1) - 7(x3 - 1) =0
(5x3 - 7)(x3 - 1) =0
5x3 - 7 =0 hoặc x3 - 1 =0
x= \(\sqrt[3]{\frac{7}{5}}\)hoặc x = 1
c/ x2 + x -2 =0
x2 - x + 2x -2 = 0
x(x - 1) + 2(x - 1) =0
(x + 2)(x - 1) =0
x + 2 = 0 hoặc x - 1 =0
x= -2 hoặc x = 1
d/ x2 - 8x5 = 0
x2(1 - 8x3) =0
x2 = 0 hoặc 1 - 8x3 = 0
x=0 hoặc x = \(\sqrt[3]{\frac{1}{8}}\)
e/ 3x2 - x-14=0
( câu này mình không biết làm)
* \(x^2-8x+12=0\Leftrightarrow x^2-2x-6x+12=0\)
\(\Leftrightarrow x\left(x-2\right)-6\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\) vậy \(x=2;x=6\)
* \(x^2+5x-14=0\Leftrightarrow x^2-2x+7x-14=0\)
\(\Leftrightarrow x\left(x-2\right)+7\left(x-2\right)=0\Leftrightarrow\left(x+7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=2\end{matrix}\right.\) vậy \(x=-7;x=2\)
* \(16x^2-81=0\Leftrightarrow16\left(x^2-\dfrac{81}{16}\right)=0\Leftrightarrow x^2-\dfrac{81}{16}=0\)
\(\Leftrightarrow x^2=\dfrac{81}{16}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{81}{16}}\\x=-\sqrt{\dfrac{81}{16}}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\) vậy \(x=\dfrac{9}{4};x=\dfrac{-9}{4}\)
+ \(x^2-8x+12=0\)
\(\Rightarrow\left(x^2-2.4x+16\right)-4=0\)
\(\Rightarrow\left(x-4\right)^2-4=0\)
\(\Rightarrow\left(x-4\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x-4=2\\x-4=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)
+ \(16x^2-81=0\)
\(\Rightarrow16x^2-9^2=0\)
\(\Rightarrow16x^2=9^2\)
\(\Rightarrow x^2=\dfrac{81}{16}\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{81}{16}}\\x=-\sqrt{\dfrac{81}{16}}\end{matrix}\right.\)