Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)=7\)
\(\Leftrightarrow25x^2-10x+1-25x^2+16=7\)
\(\Leftrightarrow-10x=-10\)
\(\Leftrightarrow x=1\)
b) k hiểu đề
Vì \(x^2+y^2=1\)
=> \(x\in\left\{1;-1\right\}\) ; \(y\in\left\{1;-1\right\}\)
MÀ \(\sqrt{4+5x}+\sqrt{4+5y}\ge0\forall x;y\)
\(\Rightarrow x=1;y=1\)
Thay Vào B=\(\sqrt{4+5}+\sqrt{4+5}=3+3=9\)
Vậy...
Ủng hộ cách khác :3
\(x^2+5x-\sqrt{x^2+5x+4}=-2\)
\(\Leftrightarrow x^2+5x+2=\sqrt{x^2+5x+4}\)
Đặt\(\sqrt{x^2+5x+4}=t\) . Phương trình trở thành :
\(t^2-2=t\)
\(\Leftrightarrow t^2-t-2=0\)
\(\Leftrightarrow\left(t+1\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t+1=0\\t-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)
Với \(t=-1\) :
\(\Leftrightarrow\sqrt{x^2+5x+4}=-1\)
\(\Rightarrow\) Phương trình vô nghiệm .
Với \(t=2\) :
\(\Leftrightarrow\sqrt{x^2+5x+4}=2\)
\(\Leftrightarrow x^2+5x=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(S=\left\{-5;0\right\}\)
Wish you study well !!
(x2 - 5x + 6)(\(\sqrt{1-x}\)) = 0
,<=> (x2 - 2x - 3x + 6)(\(\sqrt{1-x}\)) = 0
,<=> [ x(x - 2) - 3(x - 2) ].(\(\sqrt{1-x}\)) = 0
<=> (x - 2)(x - 3)(\(\sqrt{1-x}\)) = 0
\(\Leftrightarrow\hept{\begin{cases}x-2=0\\x-3=0\\\sqrt{1-x}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=3\\x=1\end{cases}}\)
Vậy x \(\in\left\{1,2,3\right\}\)
ta có (x2-5x+6).\(\sqrt{1-x}\)=0
=> \(\orbr{\begin{cases}x^2-5x+6=0\\\sqrt{1-x}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2-5x=-6\\1-x=0\end{cases}}\)=>\(\orbr{\begin{cases}x\left(x-5\right)=6\\-x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x,x-5\inƯ\left(6\right)\\x=1\end{cases}}\)
vậy .....
Bài 4 : Tìm x biết:
a, 4x2 - 49 = 0
\(\Leftrightarrow\) (2x)2 - 72 = 0
\(\Leftrightarrow\) (2x - 7)(2x + 7) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-7=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b, x2 + 36 = 12x
\(\Leftrightarrow\) x2 + 36 - 12x = 0
\(\Leftrightarrow\) x2 - 2.x.6 + 62 = 0
\(\Leftrightarrow\) (x - 6)2 = 0
\(\Leftrightarrow\) x = 6
e, (x - 2)2 - 16 = 0
\(\Leftrightarrow\) (x - 2)2 - 42 = 0
\(\Leftrightarrow\) (x - 2 - 4)(x - 2 + 4) = 0
\(\Leftrightarrow\) (x - 6)(x + 2) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
f, x2 - 5x -14 = 0
\(\Leftrightarrow\) x2 + 2x - 7x -14 = 0
\(\Leftrightarrow\) x(x + 2) - 7(x + 2) = 0
\(\Leftrightarrow\) (x + 2)(x - 7) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)
Cho các số thực x, y thỏa mãn:
x2 + y2 = 1
Tìm GTLN, GTNN của biểu thức
T = \(\sqrt{4+5x}+\sqrt{4+5y}\)
\(x^2+5x=\sqrt{37}\)
\(\Leftrightarrow4x^2+20x=4\sqrt{37}\)
\(\Leftrightarrow4x^2+20x+25=4\sqrt{37}+25\)
\(\Leftrightarrow\left(2x+5\right)^2=4\sqrt{37}+25\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=\sqrt{4\sqrt{37}+25}\\2x+5=-\sqrt{4\sqrt{37}+25}\end{matrix}\right.\Leftrightarrow x=\dfrac{\pm\sqrt{4\sqrt{37}+25}-5}{2}\)
\(x^2+5x=\sqrt{37}\)
\(\Leftrightarrow x\left(x+5\right)=\sqrt{37}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{37}\\x+5=\sqrt{37}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{37}\\x=-5+\sqrt{37}\end{matrix}\right.\)
Vậy \(x=\sqrt{37};x=-5+\sqrt{37}\).