Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8x^3+\left(x+8\right)^2=8\left(x+2\right)\left(x^2-2x+4\right)\)
\(8x^3+x^2+2\times x\times8+8^2=8\left(x^3+2^3\right)\)
\(8x^3+x^2+16x+64+8x^2=8\left(x^3+8\right)\)
\(8x^3+x\times\left(x+16\right)+64=8x^3+64\)
\(8x^3-8x^3+64-64+x\times\left(x+16\right)=0\)
\(x\times\left(x+16\right)=0\)
TH1:
\(x=0\)
TH2:
\(x+16=0\)
\(x=-16\)
Vậy x = 0 hoặc x = -16
\(8x^3+\left(x+8\right)^2=8\left(x+2\right)\left(x^2-2x+4\right)\)
\(\Leftrightarrow8x^3+x^2+16x+64=8\left(x^3+8\right)\)
\(\Leftrightarrow8x^3+x^2+16x+64=8x^3+64\)
\(\Leftrightarrow8x^3+x^2+16x+64-8x^3-64=0\)
\(\Leftrightarrow x^2+16x=0\)
\(\Leftrightarrow x\left(x+16\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+16=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-16\end{array}\right.\)
\(8x^3+\left(x+8\right)^2=8\left(x+2\right)\left(x^2-2x+4\right)\)
\(\Leftrightarrow8x^3+\left(x^2+16x+61\right)=8\left(x^3+2^3\right)\)
\(\Leftrightarrow8x^3+x^2+16x+61=8x^3+61\)
\(\Leftrightarrow8x^3+x^2+16x+61-8x^3-61=0\)
\(\Leftrightarrow x^2+16x=0\)
\(\Leftrightarrow x\left(x+16\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+16=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-16\end{array}\right.\)
\(\text{Vậy x=0 hoặc x=-16 }\)
a/ \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
<=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)
<=> \(\left(2x+3\right)^2-4x^2+1=22\)
<=> \(\left(2x+3-2x\right)\left(2x+3+2x\right)=21\)
<=> \(3\left(4x+3\right)=21\)
<=> \(4x+3=7\)
<=> \(4x=4\)
<=> \(x=1\)
......................?
mik ko biết
mong bn thông cảm
nha ................
a) \(\left(x^2+2x-2\right)\left(x^2+2x+3\right)=6\)
Đặt \(x^2+2x=a\)
\(pt\Leftrightarrow\left(a-2\right)\left(a+3\right)=6\)
\(\Leftrightarrow a^2+a-6=6\)
\(\Leftrightarrow a^2+a-12=0\)
\(\Leftrightarrow a^2+3a-4a-12=0\)
\(\Leftrightarrow a\left(a+3\right)-4\left(a+3\right)=0\)
\(\Leftrightarrow\left(a-4\right)\left(a+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-4=0\\a+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=4\\a=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2x=4\\x^2+2x=-3\end{cases}}\)
\(Th1:x^2+2x=4\Leftrightarrow x^2+2x-4=0\)
\(\cdot\Delta=2+4.4=18\)
pt có 2 nghiệm \(x_1=\frac{-2+\sqrt{18}}{2}\);\(x_2=\frac{-2-\sqrt{18}}{2}\)
\(Th1:x^2+2x=-3\Leftrightarrow x^2+2x+3=0\)
\(\cdot\Delta=2-4.3=-10< 0\)
Vậy pt này không có nghiệm
Vậy \(x_1=\frac{-2+\sqrt{18}}{2}\);\(x_2=\frac{-2-\sqrt{18}}{2}\)
b) \(\left(x^2-4x+6\right)\left(x^2-4x+8\right)=8\)
Đặt \(x^2-4x=t\)
\(pt\Leftrightarrow\left(t+6\right)\left(t+8\right)=8\)
\(\Leftrightarrow t^2+14x+48=8\)
\(\Leftrightarrow t^2+14x+40=0\)
\(\Delta=14^2-4.40=36,\sqrt{\Delta}=6\)
pt có 2 nghiệm: \(t_1=\frac{-14+6}{2}=-4\);\(t_2=\frac{-14-6}{2}=-10\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x=-4\\x^2-4x=-10\end{cases}}\)
\(TH1:x^2-4x=-4\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
\(TH2:x^2-4x=-10\Leftrightarrow x^2-4x+10=0\)
\(\Delta=\left(-4\right)^2-4.10=-24< 0\)
Vậy pt này không có nghiệm
Vậy x = 2
Bài 1:
a) 2x^2 -3x + 1 = 2x^2 -2x -x +1 = 2x.(x-1) - (x-1) = (x-1).(2x-1)
b) 2x^3y - 2xy^3 - 4xy^2 - 2xy = 2xy.(x^2 - y^2 - 2y -1) = 2xy.[ x^2 - (y^2 + 2y+1)] = 2xy.[x^2 - (y+1)^2]
= 2xy.(x-y-1).(x+y+1)
c) (x^2 + x+3).(x^2 + x +5) - 8 = (x^2+x+4-1).(x^2+x+4+1) - 8 = (x^2+x+4)^2 - 1 - 8 = (x^2+x+4)^2 - 3^2
= (x^2+x+4-3).(x^2+x+4+3) = (x^2+x+1).(x^2+x+7)
Bài 2:
a) (x+2).(x^2-2x+4) - (x^3+2x) = 0
x^3 + 8 - x^3 - 2x = 0
8 - 2x = 0
x = 4
b) x^2 - 2x - 8 = 0
x^2 +2x - 4x - 8 = 0
x.(x+2) - 4.(x+2) = 0
(x+2).(x-4) = 0
...
bn tự làm tiếp nha
\(A=2x^2+5x-3=2\left(x^2+\frac{5}{2}x-\frac{2}{3}\right)\)
\(=2\left(x^2+2.\frac{5}{4}x+\frac{25}{16}-\frac{107}{48}\right)\)
\(=2\left[\left(x+\frac{5}{4}\right)^2-\frac{107}{48}\right]\)
\(=2\left[\left(x+\frac{5}{4}\right)^2\right]-\frac{107}{24}\ge\frac{-107}{24}\)
Vậy \(A_{min}=\frac{-107}{24}\Leftrightarrow x+\frac{5}{4}=0\Leftrightarrow x=-\frac{5}{4}\)
b) \(ĐKXĐ:x\ne0\)
\(\left(5x^4-3x^3\right):2x^3=\frac{1}{2}\)
\(\Leftrightarrow x^3.\left(5x-2\right):2x^3=\frac{1}{2}\)
\(\Leftrightarrow\frac{5x-2}{2}=\frac{1}{2}\)\(\Leftrightarrow5x-2=1\)
\(\Leftrightarrow5x=3\)\(\Leftrightarrow x=\frac{3}{5}\)( thỏa mãn ĐKXĐ )
Vậy \(x=\frac{3}{5}\)
c) \(ĐKXĐ:x\ne2\)
\(\frac{x^4-2x^2-8}{x-2}=0\)\(\Rightarrow x^4-2x^2-8=0\)
\(\Leftrightarrow\left(x^4-4x^2\right)+\left(2x^2-8\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-4\right)+2\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+2\right)=0\)
Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+2\ge2\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
So sánh với ĐKXĐ ta thấy: \(x=-2\)thỏa mãn
Vậy \(x=-2\)
x² - 2x = 8
x² - 2x - 8 = 0
x² - 2x + 1 - 9 = 0
(x² - 2x + 1) - 9 = 0
(x - 1)² - 3² = 0
(x - 1 - 3)(x - 1 + 3) = 0
(x - 4)(x + 2) = 0
⇒ x - 4 = 0 hoặc x + 2 = 0
*) x - 4 = 0
x = 4
*) x + 2 = 0
x = -2
Vậy x = -2; x = 4